On the relations of the tensor fields gij and *gij in X4

By

Choong Hyun Cho

Yonsei University, Seoul, Korea

1. INTRODUCTION

Let X_4 be the space-time endowed with a real nonsymmetric tensor g_{ij} which may be split into its symmetric part h_{ij} and its skew-symmetric part k_{ij} :

$$(1, 1)a g_{ij} = h_{ij} + k_{ij},$$

where

(1.1)b
$$g=Det((g_{ij}))\neq 0, h=Det((h_{ij}))\neq 0, k=Det((k_{ij})).$$

The reciprocal tensor *gij of gij, defined by

$$\mathbf{g}_{ij}^{\bullet}\mathbf{g}^{ik}=\delta_{i}^{k},$$

may also be decomposed into its symmetric part *hij and its skew-symmetric part *kij;

$$\bullet g^{ij} = \bullet h^{ij} + \bullet k^{ij}$$

Since $Det((*h_i)) \neq 0((2), p. 41)$, we may define a unique tensor *h_{ij} by

$$\bullet h^{ij} \bullet h_{ik} = \delta_k^i.$$

In the present paper, we make an agreement that we use both h_{ij} and h_{ij} , instead of h^{ij} and h_{ij} , as the tensors for raising and/or lowering indices of all tensors defined in X_4 in the usual manner, with the exception of the tensors g_{ij} , h_{ij} , and k_{ij} in order to avoid the notational confusion. We then have for example,

so that

$$\bullet g_{ij} = \bullet h_{ij} + \bullet k_{ij}.$$

V. Hlavaty ((2), p. 8) derived the following relations:

(1.6) a
$$h^{ij} = \frac{1}{\tilde{g}} \{h^{ij}(1+K) + {}^{(2)}k^{ij}\},$$

(1.6) b
$$\bullet \mathbf{k}^{ij} = \frac{1}{\mathbf{g}} \left[\mathbf{h} \mathbf{k}^{ij} + \frac{\mathbf{i}}{2} \sqrt{\mathbf{k}} \ \mathbf{E}^{abij} \ \mathbf{k}_{ab} \right],$$

where

(1.6)c
$$\overline{g} = g/h$$
, $4K = k_{ij}k^{ij}$, $i = sgn(E^{abij} k_{ab}k_{ij})$,

and E^{abcd} and e_{abcd} are indicators of density 1 and -1 respectively.

The purpose of the present paper is to derive the remaining relations of the two tensor fields g_{ij} and ${}^{\bullet}g^{ij}$ in X_4 .

2. RELATIONS OF THE TENSOR FIELDS gij and *gij.

In addition to (1,6)a, b, we have the following two theorems:

Theorem (2.1). The tensors h_{ij} and k_{ij} satisfy the following equations:

•(2.1)a •
$$h_{ij} = h_{ij} - {}^{(2)}k_{ij}$$

•(2.1)b •
$$k_{ij} = \frac{1}{\bar{\alpha}} \left[(1 - \bar{k}) k_{ij} - 2 (1 + K)^{(3)} k_{ij} + \frac{i}{2} \sqrt{\bar{k}} (e_{ijab} k^{ab} + 2e_{abc} \epsilon^{i})^{(2)} k_{ij} k^{be} + e_{abcd} k^{ab} \epsilon^{(2)} k_{i}^{e} \epsilon^{(2)} k_{j}^{e} \right]$$

Proof. In order to prove (2.1)a, consider a tensor ${}^{\bullet}X_{ij}$ defined by

$$(2.2)a \qquad \qquad *h^{ak*}X_{aj} = \delta_I^k.$$

Substitution for •hah from (1,6)a into (2,2)a gives

(2. 2) b
$$(1+2K)^{\bullet}X_{jk} + {}^{(2)}k_{j}a^{\bullet}X_{ka} = \overline{g} h_{jk},$$

Multiplying (2.2) b by (2) k_bj first and then substituting for (4) k^{ca} from

(2.3)
$${}^{(4)}\mathbf{k}_{i}{}^{j} + 2\mathbf{K}^{(2)}\mathbf{k}_{i}{}^{j} + \overline{\mathbf{k}}\,\delta_{i}^{j} = 0, \quad (\overline{\mathbf{k}} = \mathbf{k}/\mathbf{h})$$

obtained in (2), p. 23, we have

(2. 2) c
$$-\bar{\mathbf{k}}^* \mathbf{X}_{ij} + {}^{(2)}\mathbf{k}_i a^* \mathbf{X}_{aj} = \bar{\mathbf{g}}^{(2)}\mathbf{k}_{ij}$$

(2.1) a is easily obtained by solving (2.2) b, c for *X and observing (1.4) and (2.2) a. In order to prove (2.1) b, we have by using (1.6) b and (2.1) a

(2.4)
$$*k_{ij} = *h_{ia} *h_{jb} *k^{ab} = (h_{ia} - {}^{(2)}k_{ia}) (h_{jb} - {}^{(2)}k_{jb}) \frac{1}{g} (hk^{ab} + \frac{i}{2} \sqrt{k} E^{abcd}k_{cd}).$$

This equation leads at once to (2.1) b if we make use of (2.3).

Theorem (2.2). We have

(2. 5) a
$$h_{ij} = \frac{1}{*\bar{g}} \{*h_{ij} (1 + 2*K) + {}^{(2)}*k_{ij}\},$$

(2, 5) b
$$h^{ij} = *h^{ij} - {}^{(2)}*k^{ij}$$

(2.5)c
$$k_{ij} = \frac{1}{*g} (*h*k_{ij} + \frac{*i}{2} \sqrt{*k} *e_{abij}*k_{ab}),$$

$$(2.5) d k^{ij} = *\frac{1}{\overline{g}} \left\{ (1 - *\overline{k}) *k^{ij} - 2(1 + *K) (3) *k^{ij} + \frac{*i}{2} \sqrt{*\overline{k}} (*E^{ijab*}k_{ab} + 2*E^{abc} (i*k_{a}^{j}) *k_{bc} + +E^{abcd*}k_{ab} (2)*k_{c}^{i} (2)*k_{d}^{j} \right\}.$$

Proof. The proof is similar to that of (1.6) and (2.1).

REFERENCES

- 1. L.P. Eisenhart, Riemannian Geometry, Princeton University Press, 1949.
- 2. V. Hlavaty, Geometry of Einstein's Unified Field Theory, P. Noordhoff Ltd., 1957.