On the property of closure and interior operators

by

Hwang Yll

Kon-Kuk University, Seoul, Korea

1. Introduction.

If E is the set of rational number in the space of reals R, then $CiE=\phi$ iCE=R where C denotes the closure operator and i denotes the interior operator. It is evident that the closure and interior operators does not commutes.

In this note, we will give a characterization of property of commutativity of closure and interior operators in a general topological space.

2. Definitions and lemmas.

Definition A set E is a subset of topological space T. E has property X if and only if CiE = iCE.

Lemma 1. For E a subset of a topological space T. E has property X if and only if kE has property X, where k is the complement operator.

Proof. Let E has property X, then CkE=kCkCkE=kiCkkE=CikE

Let kE has property X. Then E=kkE, therefore E has property X.

Lemma 2. Let E be a subset of a space T, then E has property X implies that CE has property X.

Proof. CiCE=CiCkkE=CkCikE=CkiCkE=CkkCkCkE difference operator. Then

- (1) $E \triangle F = F \triangle E$
- (2) $(E \triangle F) \triangle G = E \triangle (F \triangle G)$ and $E \cap (F \triangle G) = (E \cap F) \triangle (E \cap G)$

3. Theorems

We will give a characterization of property X in a topological space T.

Theorem 1. Let E be a subset of a topological space R. Then E has property X if and only if $E = (A-B) \cup (B-A)$ where A is both open and closed and B is nowhere dense.

Proof. Sufficiency. Let $E = (A - B) \cup B - A$ where A is open and closed and B is nowhere dense. Now $A - B \subset A$ and B - ACkA Hence

CiE=Ci {(A-B)
$$\cup$$
 (B-A)} = C {i(A-B) \cup i(B-A)}
= C {i_A(A-B) \cup ik_A(B-A)} = Ci_A(A-B) \cup Cik_A(B-A)
= C_Ai_A(A-B) \cup Ck_Aik_A(B-A)

Similarly iCE= $i_AC_A(A-B) \cup ik_ACk_A(B-A)$. Now $A-B=A-A \cap B$ and $B \cap A$ is nowhere dense in A.

Then A-B is the complement relative to A of a set nowhere dense in A and $C_{AiA}(A-B) = i_A C_A$ (A-B). Moreover B-A=B\(\rightarrow\) kA is nowhere dense in kA.

Thus $Ck_Aik_A(B-A) = ik_ACk_A(B-A)$ therefore we obtain CiE = iCE. CiE = iCE = iCCE.

The converse of Lemma 2 is false. For E is the set of rationals in the reals R, then E not have property X, but CE=R and R has property X.

Lemma 3. Let E be a subset of space T.

- (1) E has property X implies that iE has property X.
- (2) E or kE are nowhere dense then E has property X.

Proof. (1) Assume E has property X, then iE=kCkE has property X.

(2) Let E be a nowhere dense in T, then $CiE=\phi$. But iEC $iCE=\phi$ and $CiE=\phi$ therefore E has property X.

Remark. The converse of (1) is false. For let E be the set of rationals in the real R. Then E does not have property X, but $iE=\phi$ has property X.

Lemma 4. (1) Let A be a closed in T and B \subset A. Then CB=C_AB where C_A is the closure operator in the subspace A.

(2) Let A be open in T, and $B \subset A$, Then $iB = i_A B$ where i_A denotes the interior operator in the subspace A.

Lemma 5. Let A be open and closed in a space T.

- (1) Let $B \subset A$ and CCkA, Then $i(B \cup C) = iB \cup iC$.
- (2) B be a nowhere dense in T, then BCA is nowhere dense in A.

Lemma 6. Let E, F and G are any sets. Let \triangle be the symmetric. Necessity, Suppose E has property X, and let A=CiE=iCE Then A is both open and closed in R.

We now show that E-A and A-E are each nowhere dense, iC(E-A) CiCE=A, but also iC(E-A) CiC(kA) = kA.

Hence $iC(E-A) = \phi$. In addition, iC(A-E)C iCA=A and also iC(A-E)C iCkE=kCkCkE=kC iCkE=kC iCkE

Then B is nowhere dense and the proof will be complete when we show that $E = (A - B) \cup (B - A)$. To this end we observe that

 $(A-B) \cup (B-A) = (A \cap kB) \cup (B \cap kA)$

 $= [A \cap k \{(A \cap kE) \cup (E \cap kA)\}] \cup [\{(A \cap kE) \cup (E \cup kA)\} \cap kA]$

 $= [A \cap k(A \cap kE) \cap k(E \cap kA)] \cup [E \cap kA]$

 $=[A \cap (kA \cup E) \cap (kE \cup A)] \cup [E \cap kA]$

 $= [A \cap (kA \cup E) \cap (kE \cup A)] \cup [E \cap kA]$

 $=[(A \cap E) \cap (kE \cup A)] \cup [E \cap kA]$

 $= (A \cap E) \cup (E \cap kA) = E$

Theorem 2. Let E and E' has property X in a space T. Then E∩E' has property X.

Proof. $E=A\triangle B$, and $E'=A'\triangle B'$ where A and A' are both open and closed and B and B' are both nowhere dense by theorem 1.

Then $E \cap E' = E \cap (A' \triangle B')$ $= (E \cap A') \triangle (A' \triangle B') = (E \cap A') \triangle (E \cap B')$ $= \{(A \cap A') \triangle (B \cap A')\} \triangle (A \cap B') \triangle (B \cap B')\}$ $= (A \cap A') \triangle \{(B \cap A') \triangle (A \cap B') \triangle (B \cap B')\} = A'' \triangle B''$

Whence $A'' = A \cap A'$ and $B'' = (B \cap A') \triangle (A \cap B') \triangle (B \cap B')$.

But A" is both open and closed and B" is nowhere dense. $E \cap E'$ has property X by Theorem *.

REFERENCES

- 1. J.L. Kelley, General Topology, New York 1955.
- 2. J. Dugundji, Topology, Boston 1966.
- 2. W. Sierpinski, General Topology, Toronto 1952.