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Nonlinear Semigroup and Dissipative Operators.
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Introduction

This paper is concerned with the behavior of semigroups of nonlinear contraction operator from
a subset of a Banach space into itself. Recently, many results, known for semigroup of linear ope-
rator, were extended to nonlinear semigroups. The representations of nonlinear semigroup were given
by 1. miyadera and S. charu {1} and 1. miyadera [2].

We start §1. with the notion of a multi-valued nonlinear dissipative. §2. is concerned with
resolvent of dissipative. §3. is devoted to generation of nonlinear semigroup on a subset of a
Banach space with its dual uniformly convex and a general Banach space.

Dissipative operators.

Let X be a Banach space with its dual X*, We denote by (x,f) the value of f&X* at =X,

The norms in X and X* are denote by || ||. We find it convenient to use the notation
1 Xo ll =inf {| |x] | ;x&Xo}

for any nonempty subset Xp of X.

Definition 1.1. The duality map F of X is the multi-valued mapping from X into X* defined by

Fx= {(f€X*;Re(x, f) =| | x| 2= [f] |?}

Definition 1.2. An operotor A in X is said to be dissipative if every x, y&=D(A), x'&Ax and

vy Ay, there exists {&F (x—y) such that
Re(x' —y’, f) =0,

We say A is m-dissipative if A is dissipative and R(I—aA) =X for all a0,

Theorem 1.1, Let x,y&X. Then ||x]|=|]|x+ay|| for every a>0 if and anly if there is
f=Fx such that Re(y, f)=0.

Proof. The assertion is trivial if x=0, so we shall assume x#0 in the following, If Re(y, f)=0
for some f&Fx, then

I1x]1?=(x, f) =Re(x, f) =Re(x+ay, f) =| |x+ay| |f] | for a>0

Since [lfl|=1lx||, we obtain ||x||=||x+ay|}

Suppose, conversely, that |[x||=]|x+ay|| for a>0. For eacha>0. Let f&F(x+a y) and

g=fa/]|fs|| so that [|ge]|=1. Then [|x||=]|{x+ay||=(z+ay,g.) =Re(x, g.) +aRe(y, gs) =
{1x]|+aRe(y, go).



Thus
@ lim inf Re(x, g)2=||x| and Re(y, g) =0,

Since the closed unit fall of X* is compact in the weak topology, the net {g.} has a cluster point-
geX* with ||g|l=s|. In view of (1.1), however, g satisfies

Re(x,g)=]|x|| and Re(y, g)=0. Hence we must have ||g||=1 and (x,g) =]|]|x}]].
on setting f=||x|]g, we see that f&Fx and Re(y, f)=0.

Theorem 1.2. If X* is uniformly convex, F is single-valued and is uniformly continuous on any
bounded set of X, In other words, for each €0 and M >0, there is 62>0 such that ||x||]<M.
and ||x—y||<0 implies ||Fx—Fy||<e.

Proof. It suffices to show that the assumptions

[x]I<M, | |%a—¥al | =0, ||Fxa~Fya||=e0>0, n=1,2, -
lead to a contradiction. If x,—0, then y,—0 and so ||Fxs||=||xa]|—0 and sumlarly | [Fya]|—0,
hence ||Fxs—Fyn||—0, a contradiction.
Thus we may assume that [1za]|Za>0, replacing the given sequence by suitable subsequence if-
necessary. Then ||y.]|= for sufficiently large n, Set

ﬂ ﬂ

unzm and vnzm. Then ||ux||=]|va]|=1 and va—va= (Xn—yn) /| |xs]||

+ (xal |72~ 13| | ") ¥n s0 that | |un—va||=2]|xa—yn||/[|xa)—0.
since Fxa=F (| |%n| |tn) =||%n| |Fun and similarly Fy,=||ys||Fvs, we now obtain
Fxa—Fyn=||%n| | (Fus—Fva) + ([ |%s] | — | |¥a| |)Fvs—>0 by | |xa] |[<<M.
Thus we have arrived at a contradiction again.
Theoren 1. 3. Let x(t) be an X valued function on an interval of real numbers.
Suppose x(t) has a week derivative x’ (s)=X at x=s,
If ||x(t)|] is also differentiable at t=s, then

@1 x®(-5)!15® || =Re( ), D
for every f&Fx(s).

Proof. Since Re(x(), H=]1x® 11 [1f11=11x® 1] 11x®)]] and Rex®,H=[1xG[13
have

Re(x(t) —x@), H=[1x@ | ([ 1x®O [I=]]x@&) | D.
Dividing both side by t—s and letting t—s from above and from below, we obtain

Re( (9, D= 1x@ | 1{-5) 1 111

2. Resolvents of dissipative

Definition 2.1. Let Xo be a subset of X, Let Cont(Xo) be the set of all contraction operators-
from Xp into with domain Xo if and only if ||Tx—Ty|[=]||x~y]] for x, y&X.
Let A be dissipative. Then we can define
Je=(—aA)"?
for all a>0, with D(Js) =R(I—aA) and R(J,) =D(a), and set Ae=a(Ja~I). Both J. and A.



are single-valued with Da=D(Js) =D(As). By definition Jox=y for xD. if and only if
x& (I—aA)y=y—aAy for y=D(A). ]« is contraction and A, is Lipschiz continuous;
[ Aex—Aay| | =227 |x—y]|
for x, yED,
Theorem 2.1, Let A be dissipative and let a>>0. Then
i) A is dissipative
ii) AaxEAJs and || AlX [} =||Asx|| for xED,,
iii) if x=D(A)Ds, then
MAJax Il =] |Aax| | = Il Ax Il
Proof. (i) Let x,yeD, and f&F (x—y). Then
Re(Ae x—Aay, )
=a~'Re(Jux—Jay, f) —a"'Re(x—y, f)
=aJax—Jay|| |1f][—a||x—y]]2
=0,
(ii) Set Jox=y, Then x=y—ay’, with yEAy,
Hence A, x=a l(y—x) =y, Ay=AJ.x, and
' MALxll =]y [ |=]]Asx]].
(i) if x=D(A) NDe, then x=Ja(x—ax’) for any x’&Ax. we have
HAsx] [=a™||Ja x—x]]
=a|Ja x—Ja(x—ax') ||
=[1x'l]
Hence ||Aa x| |=inf||x’|]|=]|Ax|].
x'SAx
Theorem 2.2, Let A be dissipative. Then
(@) lim J. x=x for x&D(A) NDa and a>>0,
(i) if n is a positive integer, for x=D(A) ND (J.» and a>0,
Proof. If follows from||J.x—x||=all Ax |l

3. Generation of semigroups.

Let Xo be a subset of X, Let {T(t);t=0} be a family of one-parameter operators, not necessarily
linear, from Xy into itself satisfying the following conditions

) TO) =L T@EtE)=T(+s) for s, t=0,

if) for x=Xo, T(t)x is strongly continuous in =0,

iii) T(t)=Cont(Xo) for t=0

Then we call such a family {T(t);=0} a nonlinear contraction semigraup on Xo. And we define
infinitesimal generator of the semigroup {T(t);t=0} on Xo by »

aox i 2 =s

and the weak infinitesimal generator A’ by



A'x=w—lim: x, if the right sides exists in X,

a0+
Theorem 3.1. A and A’ are dissipative.

Th)-I
h

Proof. We set A’*:—T&}z—_L for h>0,

For %, y&=D(A), we have Re(A*x—Ahy, f) =0 for every f&F(x—y), and hence Re(A’x—A'y, f)
=0 for every {&F(x—y) as h—0+. Thus A’ is dissipative. Since A'DAyp, Ao is dissipative.
Theorem 3,2, Let A be m-disspative and let &>>0. Then equation

G.1) —-(-i—u—(;—t:}—{l—zAu(t;x) for £0
u(0;x) =x&X

has a unique solution u(t;x) &C’ ([0, o0) ;x) for x&X, and
Hutsx) —ulty) | 1= 1x—y]|
for x, y&X.
Proof. Since A. x is Lipschitz continuous, uniformly in X, the equation (3.1) has a unique sol-
ution u(t;x) EC' ([0, 00) ;X) for x=X, For x,y=X, put w(t) =u(t;x) —u(t;y) for t=0. Then
w(t)&C' ([0, 00) ;X) and

w0 =Aa(t5%) — Aat(t:9)

w(0) =x~y.
Since |[w(t) ]| is absolutely continuous, ||w(t)]| is differentiable for a.e, t>>0, Tuse by Theorem
1.3. we get for a, e, s>0.

d ,
(3.2) HW(S)H‘d'S—llW(S)|I=Re(W (s),D
=Re(Aqu(s;x) —Aau(s;y), )
for every f&Fw(s). Since A, is dissipative by Theorem 2.1 (i) there exists f;&Fw(s) such that
Re(Aau(s;x) —Aqu(s; x) —Aau(s;y), f:) =0.

“Thus

W@ 41w E | 1=0
for a.e.s=0 combining this with (3.2). Since

Hw® 2= 1w |12={i— | 1w (9 | 1xds=0

for t=0, we abtain
[ut;z) —ut;V) | |=])x—y]|

for t=0.
Theorem 3.3. Let A be m-disspative and a >0, Then there exists a semigroup {Ta«(t):t=0} on
X with its infinitesimal generator A. such that for x&X, Ta()xe=C’ ([0, 00);X) and

d —
m Ta(t)x=AT ()2
for t=0,



Proof. Let u(t;x) be the unige solution of the equation (3,1), and put T«(t)x=u(t;x) for x&=X
and t=0. Then {T.(t);t=0} is the desired semigroup on X,

Theorem 3.4. Let X* uniformly convex and let A is m-dissipative. Then there exists a semigroup:
{T(t);t=0} on D(a).

Proof. By theorem 3.3, we note that
3.3 AT x] | =] Aax] | =l Azl
for x=D(A) and t=0. For x&D(A), put

Wa, 8 (t) =Te (t) x~Ts (t)x

for a, 5>>0, in Theorem 3.3,

We shall show that a,l,is%+ wap () =0 for t==0. By(3.3), we have

|1%e, 85) |1, |ATa(© x—AsTa@ x| |dt

=2||Ax]||[s
for s=0. Setting va, s () =JaTa(s)x—JsTs(s)x, we obtain
| 1Wa, 8(S) —Va, 8} | = (2 +0) Il Ax1ll,
and hence we have

[1vey 8(8) [ 1= (2s+a+p) ll Axl.
By the dissipative of A, combining with Theorem 2.1 (ii),

G.9 Re(AuTo(s) x—ApT(s)x, Fva, 5(s)) =0,
Thus Re(A.Ta(s)x—AsTs(s)x, FW,, 5(s))
=Re(A:Te(s)x—AsTs(s)x, Fwe, (s
=2 Ax{ll [IFwaq, () —Fva, s(s) |},
here we have used (3.3) and (3.4) Since||wq, s(s) || is absolutely continuous in s=0, | |wa, (s) | ]
is differentiable at a. e, s=0, Hence -

19000 112= [ e, 50 11205
=2j;Re (AxTa () x—AsTs(s)x, Fwa, 5(s))ds
=411 AxIl ||| 1Fws, 66 ~Fve, 5(9) | 1ds.

Fix t2>0. It follow that the set
{Wa, 5(S) 1 Va, 8(8) s0=s=t, 0<a, B=1}
is bounded and wa, s(s) —Va, s(s) converges uniformly in s&[0,to] to zero as a,~——0+. By
Theorem 1.9 since F is uniformly continuous on any bounded set, we obtain that
lir_x} Wa, 5(t) =0

oy 8
uniformly in te[0, to], that is, for x=D(A)
3.5 li;rlo HTa(t)x—Ts®) | 1x=0
G’ !

uniformly in t&[0, to]. Since Tu(t)=Cont(X), (3.5) holds true for x&D(A). we define T(t) by
T(®) x=lir% Te(t)x

for x=D(A), Then {T(t);t=0} is semigroup on D(A).



Indeed, it is sufficient to show that T(t) maps D(A) into itself.
For xe=D(A), since ||JaTa()x—T.(t)x||=a ]| Ax]], we have
lin; JaTa () x=T(t)x
uniformly in t&[0, to], and T (t)x=D(A)
because J.T,(t)&=D(A). Since T(t) =Cont (D(A)), T(t) maps D(A) into D(A).
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