A note on locally compactness of cluster set

by

Hwang Yll

Kon-Kuk University, Seoul, Korea

Let (X, T) be a topological space. We denote by X^{\bullet} the set of all filters on X which converge for T to some point of X. We regard convergence of filter for T as a relation $f: X^{\bullet} \to X$ writing $\varphi f x$ if φ converges to x, where φ is member of X^{\bullet}

This relation is a mapping if and only if (X, T) is a Hausdorff space, Wyler [1] who has shown that a Hausdorff space (X, T) is regular if and only if convergence of filter on X for T defines a continuous map $f: (X^{\bullet}, T^{\bullet}) \longrightarrow (X, T)$ and also generalize above paragraph.

That is, for a topological space (X, T) with filter convergence f, (X, T) is a T_3 -space if and only if $f: (X^{\bullet}, T^{\bullet}) \rightarrow (X, T)$ is continuous.

Definition 1. For a filter \mathcal{F} in a topological space X the cluster set of \mathcal{F} is $\cap \{\overline{F} : F \in \mathcal{F}\}$. We will denote the cluster set of \mathcal{F} by $\beta(\mathcal{F})$.

For a set X, and subset U of X, P(x) is the power set of X and I(U, X) is the family of all non-empty subsets of X which intersect U.

Definition 2. X is topological space, the lower semifinite topology on P(X) has a subbasis all sets of the form I(U, X) where U is open in X.

We will denote all filters of a topological space X which have non-empty cluster set by X*. The filter space X* will be assumed to carry the topology which has as a subbasis all sets of the $U^* = \{ \mathcal{F} \in X^* : F \cap U \neq \phi \text{ for all } F \text{ in } \mathcal{F} \}$ where U is open in X.

Theorem 3. Let X be a Hausdorff space and P(X) have the semifinite topology. Then the cluster set function $f: X^* \to P(X)$ is continuous if and only if X is locally compact.

Proof. Assume X is not locally compact we will prove that f is not continuous. Since X is not locally compact, there is a point p in X such that no nbd of p is compact. Hence for every nbd of p, there is a filter \mathcal{F}_U in U which has no cluster point.

Let \mathcal{F}_0 be the filter of all supersets of $\{p\}$. If W^* , where W is open, is a subbasis nbd of \mathcal{F}_0 , then in particular $\{p\} \cap W = \phi$ so W is a nbd of p. Note since X is Hausdorff, $f(\mathcal{F}_0) = \{p\}$.

Now let I(V, X), where V is open, be a subbasic nbd of $f(\mathcal{F}_0)$, so that V is a nbd of p. Consider for each nbd U of p, the filter $Z_U = \{F \cup (X - V) : F \in \mathcal{F}_U\}$ which has cluster set $f(Z_U) = X - V$. If W* is a subbasic nbd of \mathcal{F}_0 , $Z_U \in W^*$ for $U \subset W$.

Thus the net of filter Z_U converge to \mathfrak{F}_0 But $f(Z_U)$ does not belong to I(V,X) for any U. There-

fore $f: X^{\#} \rightarrow P(X)$ is not continuous.

Assume X is locally compact. Let \mathcal{F}_0 be in X* and I(V, X), where V is open, be a subbasic nbd of $f(\mathcal{F}_0)$.

Then for some p in $f(\mathfrak{F}_0)$, p is also in V. Hence there is compact nbd of U of p contained in V. Consider the nbd of \mathfrak{F}_0 , U*, and let \mathfrak{F} be in this nbd. Then for each F in \mathfrak{F} , $F \cap U = \phi$ so that a filter \mathfrak{F}_U is generated by the collection $\{F \cap U : F \in \mathfrak{F}\}$ Since U is compact, \mathfrak{F}_U must have a cluster point q in U.

But \mathcal{F} is coarser than \mathcal{F}_U , so q is also a cluster point of \mathcal{F} . Thus $f(\mathcal{F}) \cap U = \phi$ so $f(\mathcal{F}) \in I(V, X)$. Therefore f is continuous.

要 約

Wyler [1]는 Hausdorff space 의 regularity 를 論함에 있어서 Filter 공간상에서 相異한 位相으로 취급하였으나 본 論文에서는 同一한 位相을 使用하여 취급하였다.

REFERENCES

- 1. Oswald Wyler, A characterization of regularity in topology. Proc. Amer Math Soc. 29 (1971).
- 2. N. Bourbaki: Elements of Mathematics I.