Some fixed point theorems in a metric space.

Bv

Kwon, Young-In

Kyungpook University, Taggu, Korea

1. Introduction.

Let T be a self-mapping on a non-empty complete metric space (X, d).

Let a_i , $i=1, 2, \dots, 5$ be non-negative real numbers such that $\sum_{i=1}^{5} a_i < 1$ and for any distinct x, y in X, \vdots (1) $d(T(x), T(y)) \le a_1 d(x, y) + a_2 d(x, T(y)) + a_3 d(y, T(x)) + a_4 d(x, T(x)) + a_5 d(y, T(y))$, where $a_i = \alpha_i(x, y)$.

It is the purpose of this paper to obtain some fixed point theorems for a self-mapping T in (1) with a_i replaced by $\alpha_i(d(x, y))/d(x, y)$.

It is introduced [4] self-mappings α_i , i=1, ..., 5, on $[0, \infty)$ such that $\alpha_2 = \alpha_3$, $\alpha_5 = \alpha_5$, $\sum_{i=1}^{5} \alpha_i$ (tt) < for all t>0 and each α_i is upper semicontinuous.

It is assumed that for any distinct x, y in X, (1) is satisfied with a replaced by $\alpha_i(d(x, y))/d(x, y)$. We proved that T has a unique fixed point for each α_i is lower semicontinuous from right.

2. Theorem. Let T be a generalized nonexpansive mapping on a complete metric space. Suppose $\alpha_2 = \alpha_3$, $\alpha_4 = \alpha_5$. Then T has a unique fixed point.

Proof. Let $x_0 \in X$. Define $x_{2n+1} = T(x_{2n})$, $x_{2n+2} = T(x_{2n+1})$, $n = 0, 1, 2, \cdots$. We may assume that $x_n \neq x_{n+1}$ for each n. From that T is a generalized nonexpansive mapping with $a_i = \alpha_i(x_0, x_1)$. $d(x_1, x_2) = d(T(x_0), T(x_1)) \leq (a_1 + a_4) d(x_0, x_1) + a_2 d(x_0, x_2) + a_5 d(x_1, x_2)$. Since $d(x_0, x_2) \leq d(x_0, x_1) + d(x_1, x_2)$,

(1) $d(x_1, x_2) \le \frac{a_1 + a_2 + a_4}{1 - a_2 - a_5} d(x_0, x_1)$. From the hypothesis, $a_2 + a_4 \le r/2 < 1/2$ and

(2)
$$\frac{a_1 + a_2 + a_4}{1 - a_2 - a_5} \leq \frac{r - a_2 - a_4}{1 - a_2 - a_4} \leq \max \left\{ \frac{r - x}{1 - x} : x \in [0, 1/2] \right\} \leq r.$$

From (1) and (2), $d(x_1, x_2) \leq rd(x_0, x_1)$. By induction,

(3) $d(x_{n+2}, x_{n+1}) \le rd(x_{n+1}, x_n)$ $n=0, 1, 2, \cdots$ and $d(x_{n+1}, x_n) \le r^n d(x_0, x_1)$ $n=0, 1, 2, \cdots$.

Since r < 1, $\sum_{n=0}^{\infty} d(x_{n+1}, x_n) < \infty$ and therefore $\{x_n\}$ is Cauchy.

By completeness of (X, d), $\{x_n\}$ converges to some point x in X. Since $x_{n+1} \neq x_n$ for each n, we may assume that $x_{2n+1} \neq x$. Thus there is a subsequence $\{k(n)\}$ of $\{n\}$ such that $x_{2k(n)+1} \neq x$ for

each n. Let n≥1.

 $(4) d(x, T(x)) \leq d(x, x_{2k(n)+1}) + d(x_{2k(n)+1}, T(x)) = d(x, x_{2k(n)+1}) + d(T(x_{2k(n)}), T(x)).$

From the hypothesis with $a_i = \alpha_i(x_{2k(n)}, x)$,

(5) $d(T(x_{2k(n)}), T(x)) \leq a_1 d(x_{2k(n)}, x) + a_2 d(x_{2k(n)}, T(x)) + a_3 d(x, x_{2k(n)+1}) + a_4 d(x_{2k(n)}, x_{2k(n)+1}) + a_5 d(x, T(x)) \leq d(x_{2k(n)}, x) + r/2 d(x_{2k(n)}, T(x)) + d(x, x_{2k(n)+1}) + d(x_{2k(n)}, x_{2k(n)+1}) + r/2 d(x, T(x)).$ By (4), (5) and letting $n \to \infty$, $d(x, T(x)) \leq r d(x, T(x))$. Since r < 1, T(x) = x. If T(y) = y, d(x, y) = x.

By (4), (5) and letting $n \to \infty$, $d(x, T(x)) \le rd(x, T(x))$. Since r < 1, 1(x) = x. If T(y) = y, $d(x, y) = d(T(x), T(y)) \le (a_1 + a_2 + a_3) d(x, y) < d(x, y)$, a contradiction.

Let X be a complete metric space. Let T be a self-mapping on X. T is called a generalized non-expansive mapping if there exists symmetric functions α_i , $i=1,2,\cdots$ 5 of $X\times X$ into $[0,\infty]$ such that

(a)
$$r = \sup \left\{ \sum_{i=1}^{5} \alpha_i(x, y) ; x, y \in X \right\} < 1$$
. and

(b) for any distinct x, y in X,

 $d(T(x), T(y)) \leq a_1 d(x, y) + a_2 d(x, T(y)) + a_3 d(y, T(x)) + a_4 d(x, T(x)) + a_5 d(y, T(y)), \text{ where } a_i = \alpha_i(x, y).$

Theorem. Let T be a self-mapping on a complete metric space (X, d). Suppose that lower semi-continuous from the right functions α_i , $i=1, 2, \dots 5$ of $(0, \infty)$ into $[0, \infty]$ such that

(1)
$$\sum_{i=1}^{5} \alpha_i(t) < t, t > 0$$
;

(2) for any distinct x, y in X,

 $d(T(x), T(y)) \leq a_1 d(x, y) + a_2 d(x, T(y)) + a_3 d(y, T(x)) + a_4 d(x, T(x)) + a_5 d(y, T(y)),$ where $a_i = a_i(x, y)/d(x, y)$.

Then T has a unique fixed point.

Proof. Let $x_0 \in X$, $x_{n+1} = T(x_n)$, $s_n = d(x_n, x_{n+1})$, $n = 0, 1, 2, \cdots$. First, we shall prove that T has a fixed point. We may assume $s_n > 0$ for each n. By (2),

(a) $s_0s_1=s_0d(T(x_1), T(x_0)) \le \alpha_1(s_0)s_1+2(s_0)s_0+4(s_0)d(x_0, x_2)+\alpha_5(s_0)s_0$. Since $d(x_0, x_2) \le S_0+s_1$, from (a)

(b)
$$s_1 \leq \frac{\alpha_1(s_1) + \alpha_3(s_1) + \alpha_5(s_1)}{s_1 - \alpha_2(s_1) - \alpha_3(s_1)} s_0$$
, Similary

(c)
$$s_2 \leq \frac{\alpha_1(s_1) + \alpha_3(s_1) + \alpha_5(s_1)}{s_1 - \alpha_2(s_1) - \alpha_3(s_1)} s_1$$
,

By symmetry of x, y in (2), we may assume $\alpha_1 = \alpha_2$, $\alpha_3 = \alpha_4$. From (b), (c) and induction,

(d) $s_{n+1} \leq \alpha(s_n)$, $n=0,1,2,\cdots$, where

$$\alpha(t) = \frac{\alpha_1(t) + \alpha_3(t) + \alpha_5(t)}{t - \alpha_2(t) - \alpha_4(t)} t, \quad t > 0.$$

From (1), $\alpha(t) < t$ for t > 0, $\{s_n\}$ is decreasing and therefore converges to some point s in $[0, \infty)$. If s > 0, then $s = \lim_{n \to \infty} s_{n+1} \le \lim_{n \to \infty} \sup \alpha(s_n)$, (e) Since α is lower semicontinuous from the right, from

(e), $s \leq \alpha(s)$, a contradiction. So, s=0

Next. Suppose that $\{x_n\}$ is not a Cauchy sequence. Then exists r>0 and sequences $\{p(n), q(n)\}$ such that for each $n=0,1,2,\cdots$, (f)p(n)< q(n)>n, $d(p(n),q(n))\ge r$ and $d(x_{p(n)-1},x_q(n))< r$. Let $n\ge 0$, $c_n=d(x_{p(n)},x_{q(n)})$. Then $r\le C_n\le d(x_{p(n)-1},x_{q(n)})+d$ $d(x_{p(n)}-1,x_{p(n)})\le r+s_{p(n)-1}$

Since $\{s_n\}$ converges to 0, $\{c_n\}$ converges to r from the right.

By (2),
$$c_n d(T(xp_{(n)}), T(x_{q(n)})) \leq \alpha_1(c_n) s_{p(n)} + \alpha_2(c_n) s_{q(n)} + \alpha_3(c_n) d(x_{p(n)}, x_{q(n)+1}) + \alpha_4(c_n) d(x_{q(n)}, x_{p(n)+1}) + \alpha_5(c_n) c_n$$

By letting $n \rightarrow \infty$.

 $r^2 \leq (\alpha_0(r) + \alpha_4(r) + \alpha_5(r))r$ contradict to (1). Hence $\{x_n\}$ is Cauchy sequence.

Since (X, d) is complete, $\{x_n\}$ converges to some point x in X.

Since each $s_n > 0$, there exists a subsequence $\{x_{k(n)}\}$ of $\{x_n\}$ such that $x_{k(n)} \neq x$ for each n.

Let $n \ge 0$, $d_n = (x, x_{k(n)})$. Then from (2),

 $d(\mathbf{x}_{k(n)+1}, T_{(x)}) = d(T\mathbf{x}_{k(n)}), T(\mathbf{x}) \leq [\alpha_1(\mathbf{d}_n)\mathbf{s}_{k(n)} + \alpha_2(\mathbf{d}_n)d(\mathbf{x}, T(\mathbf{x})) + \alpha_3(\mathbf{d}_n)d(\mathbf{x}_{k(n)}, T(\mathbf{x})) + \alpha_4(\mathbf{d}_n)d(\mathbf{x}, \mathbf{x}_{k(n)+1}) + \alpha_5(\mathbf{d}_n)d_n]/d_n.$

So
$$d(x, T(x)) \leq \frac{\alpha_2(d_n) + \alpha_1(d_n)}{d_n} d(x, T(x)) + 0(n)$$
, where $\{0(n)\}$ coverges to O.

Since $\alpha_2(t) + \alpha_3(t) < t/2$ for t>0, $d(x, T(x)) \le d(x, T(x))/2$.

Therefore T(x) = x. If T has two distinct fixed points x_1, x_2 , in X, then $d(x_1, x_2) = d(T(x_1), T(x_2))$ $\leq (\alpha_3(d(x_1, x_2)) + \alpha_4(d(x_1, x_2)) + \alpha_5(d(x_1, x_2)) < d(x, x_2)$, a contradiction.

Hence T has a unique fixed point in X.

Theorem. Let (X, d) be a nonempty compact metric space.

Let T be a continuous function of X into it self. Suppose that there exists non-negative real-valued -decreasing functions $\alpha_1, \dots, \alpha_5$ on $(0, \infty)$ such that

- (a) $\alpha_1 + \alpha_2 + \cdots + \alpha_5 \leq 1$
- (b) $\alpha_1 = \alpha_2$ and $\alpha_3 = \alpha_4$
- (c) for any distinct x, y in X,

$$d(T(x), T(y)) < a_1 d(x, T(x)) + a_2 d(y, T(y)) + a_3 d(x, T(y)) + a_4 d(y, T(x)) + a_5 d(x, y).$$

where $a_i = \alpha_i(d(x, y))$.

Then T has a unique fixed point.

Proof. Let F be the function on X by F(x) = d(x, T), $x \in X$. Then F is continuous on X. So F takes its minimum value at some x_0 in X. We shall prove that x_0 is a fixed point of T. Suppose not. Let

$$x_1=T(x_0), x_2=T(x_1), x_3=T(x_2),$$

 $b_0=d(x_0, x_1), b_1=d(x_1, x_2), b_2=d(x_2, x_3).$

Then $b_0>0$, $b_1>0$. From (c),

(5) $(1-\alpha_2(b_0)-\alpha_3(b_0))b_1 < (\alpha_1(b_0)+\alpha_3(b_0)+\alpha_5(b))b_0$.

Let $m(t) = 1 - \alpha_2(t - \alpha_3(t), n(t) = \alpha_1(t) + \alpha_3(t) + \alpha_5(t), t > 0.$

From (a), $m(b_0) > 0$. So (6) $b_1 < \frac{n(b_0)}{m(b_0)} < b_0$.

Similarly,

(7)
$$b_2 < \frac{v(b_1)}{u(b_2)} < b_1$$
, where $u(t) = 1 - \alpha_1(t) - \alpha_4(t)$, $v(t) = \alpha_2(t) + \alpha_4(t) + \alpha_5(t)$, $t > 0$.

From (6) and (7),
$$b_2 < \frac{v(b_1) n(b_0)}{u(b_1) m(b_0)} b_0$$

Let $b=\min\{b_0, b_1\}$.

Then $v(b_1)n(b_0)-u(b_1)m(b_0) \leq v(b)n(b)-u(b)m(b) < 0$,

Hence $\frac{v(b_1) n(b_0)}{u(b_1) m(b_0)} < 1$. Then $b_2 < b_1$, a contradiction to the minimality of b_0 .

So T has a fixed point.

If x, y are distinct fixed points of T, from (c), d(x, y) = d(T(x), T(y)) < d(x, y). a contradiction-Hence x = y.

Reference.

- 1. P. Srivastava and V.K. Gupta, A note on common fixed points, Yokohama Math. J., XIX. (1971), 91-95.
- 2. Chi Song Wong, Fixed point theorems for non expansive mappings, J. Math. Anal. Appl., 37 (1972), 142-150.
- 3. Chi Song Wong, Common fixed points of two mappings, Pacific J. Math 48(1973), 299-312.
- 4. Chi Song Wong, Generalized contractions and fixed point theorems, Proc. Amer. Math. Soc. 42(1974), 409-417.
- 5. W.A. Kirk and W.D. Royalty, Fixed point theorems for certain nonexpansive mappings, Illinois: J. Math. 15 (1971), 656-663.
- 6. L.P. Belluce and W.A. Kirk, Nonexpansive mappings and fixed-points in Banach spaces, Illinois J. Math. 11(1967), 471-479.