CAUCHY-TYPE CRITERION FOR STOCHASTIC CONVERGENCE

by

In Whan Chung

Yonsei University, Seoul, Korea

1. DEFINITIONS AND NOTATIONS

In the present paper we shall always tacitly assume that a probability space $(\Omega, \mathfrak{U}, P)$ is given and that all random variables are defined on this space. For our further discussions, several definitions will be given first of all.

Definition (1.1). A sequence of random variables $\langle X_n \rangle$ converges almost certainly to zero if $P(\lim_{n \to \infty} X_n = 0) = 1$. We express this statement by the notation a.c.l. $X_n = 0$.

Definition (1.2). A sequence of random variables $\langle X_n \rangle$ converges almost certainly to a random variable X if the sequence $\langle X_n - X \rangle$ converges almost certainly to zero. This statement will be expressed as a.c.l. $X_n = X$.

Definition (1.3). A sequence of random variables $\langle X_n \rangle$ converges in probability to a random variable X if $\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$ for any $\epsilon > 0$. This statement will be expressed as $\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$.

Definition (1.4). A sequence of random variables $\langle X_n \rangle$ converges in the r-th mean to a random variable X if all X_n and X have finite moments of order r>0 and if $\lim_{n \to \infty} E|X_n-X|^r=0$. This statement will be expressed as $L_r-\lim_{n \to \infty} X_n=X$.

Now, consider the inequality

$$(1,1) |X_j - X| \leq \epsilon$$

for an arbitrary positive number ϵ , where X is a fixed random variable and $\langle X_j \rangle$ is a sequence of real random variables. Then the sets A_j , $\epsilon = \{w : |X_j - X| \le \epsilon\}$ and A_n , $v = \{w : |X_{n-v} - X_n| \le \epsilon\}$ are subsets of the sample space Ω . Define the sets

$$B_{n, \epsilon} = \bigcap_{i=n}^{\infty} A_{i, \epsilon}; A_{n}^{\epsilon} = \bigcap_{v=1}^{\infty} A_{i, v}; B_{n}^{\epsilon} = \bigcap_{k=n}^{\infty} A_{k};$$

$$(1.2) B^{\epsilon} = \bigcup_{n=1}^{\infty} B_n^{\epsilon}; B_{\epsilon} = \bigcup_{n=1}^{\infty} B_n, \epsilon.$$

Then, we have $B_{\epsilon} = \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} A_{j, \epsilon} = \lim_{j \to \infty} \text{Inf } A_{j, \epsilon}$, and see that the sets $A_{j, \epsilon}$, $A_{n, \nu}$, $B_{n, \epsilon}$, $A_{n, \nu}$, $A_{$

taneously. Let $\langle \epsilon_{\nu} \rangle$ be a sequence of positive numbers such that $\lim_{\nu \to \infty} \epsilon_{\nu} = 0$. Again we can define the set B for each and the set $B = \bigcap_{\nu=1}^{\infty} B_{\epsilon\nu}$. Then we have again $B \in \mathfrak{U}$. The set B is the event that for any $\epsilon > 0$, however small, the inequality (1.1) holds for almost all J; in other words, B is the event such that $\lim_{n \to \infty} X_n = X$. It is well known fact that if $\lim_{n \to \infty} X_n = X$ and $\lim_{n \to \infty} A_n = X$. It is well known fact that if $\lim_{n \to \infty} A_n = X$ and $\lim_{n \to \infty} A_n = X$. It is well known fact that if $\lim_{n \to \infty} A_n = X$ and $\lim_{n \to \infty} A_n = X$.

2. MAIN RESULTS

In the present section, our main results will be proved.

Lemma (2.1). We have

(2.1) a.c.l.
$$X_n = X$$
 if, and only if $\lim_{n \to \infty} P(\sup_{v} |X_{n+v} - X_n| \le \delta) = 1$ for every $\delta > 0$.

Proof. First of all, we prove that the condition is necessary. Since $|X_{n+v}-X_n| \le |X_{n+v}-X| + |X_n| - |X|$, we see that A_{n+v} , $\varepsilon_{/2} \cap A_n$, for all v. Hence we have

$$B_{n,\epsilon/2} \subset A_{n^{\epsilon}}.$$

 A_n^{ϵ} is the event that the inequalities $|X_{n+v}-X_n| \leq \epsilon$ hold simultaneously for all v; in other words, (2.3) $A_n^{\epsilon} = \{w : \sup_{\epsilon \in C} |X_{n+v}-X_n| \leq \epsilon\}.$

Hence we may conclude from (2.2) and (2.3) that

$$P(\sup_{n}|X_{n+v}-X_n|\geq P(B_n,\varepsilon_{/2}).$$

This relation together with the inequality

$$\lim_{n\to\infty} P(B_n, \varepsilon_{/2}) = \lim_{n\to\infty} P(\bigcap_{j=n}^{\infty} \{w : |X_j - X| \leq \epsilon\} \lim_{n\to\infty} P(a.c.l. |X_n = X) = 1,$$

obtained from the definitions (1.1) and (1.2), imply our assertion

$$\lim_{n\to\infty} P(\sup_{\nu}|X_{n+\nu}-X_n|\leq\delta)=1.$$

To prove the sufficiency of the condition, we note first of all that for any integer $q \ge n$

$$A_n^{\varepsilon/2} \subset \{w : |X_{q+v} - X_n| \le \varepsilon/2\} \cap \{w : |X_q - X_n| \le \varepsilon/2\} \subset \{w | X_{q+v} - X_q| \le \varepsilon/2\},$$

which are equivalent to $A_n^{\varepsilon/2} \subset A^{\epsilon}_q$, v for all $q \ge n$ and all v. Hence, we have $A_n^{\varepsilon/2} \subset A_q^{\epsilon}$ for all $q \ge n$, so that $A_n^{\varepsilon/2} \subset B_n^{\epsilon}$ and

(2.4)
$$\lim_{n\to\infty} P(A_n^{\varepsilon/2}) \leq \lim_{n\to\infty} P(B_n^{\varepsilon}) = P(B^{\varepsilon}).$$

Therefore, using (2.4) and the condition $\lim_{n\to\infty} P(\sup^{\nu}|X_{n+\nu}-X_n|\leq\delta)=1$, we may conclude that for any fixed $\epsilon>0$

(2.5)
$$P(B^{\epsilon}) = 1$$
.

Let ϵ_{ν} be a decreasing sequence of positive numbers such that $\lim_{n\to\infty} \epsilon_{\nu}=0$, and form the set $B=\bigcap_{\nu=1}^{\infty} B^{\epsilon\nu}$. Then P(B)=1 from (2.5). Since the sequence $\langle X_{j} \rangle$ satisfies the Cauchy condition on every point of the set B, there exists a function Y=Y(w) such that $\lim_{n\to\infty} X_{n}(w)=Y(w)$ for all $w\in B$.

Extending this function to the whole space Ω by defining

$$X(\mathbf{w}) = \begin{cases} Y(\mathbf{w}), & \text{if } \mathbf{w} \in \mathbf{E} \\ 0, & \text{if } \mathbf{w} \in \mathbf{B}^c \end{cases}$$

Since $P(B^c) = 0$, we see that a.c.l. $X_n = X$. Q.E.D.

Lemma (2.2). Let $\langle X_n \rangle$ be a sequence which has the property that for any $\epsilon > 0$, $\delta > 0$ there exists an integer N=N (ϵ ; δ) such that P($|X_n - X_m| > 0 \le \delta$, provided that m, $n \ge N$. then the sequence $\langle X_n \rangle$ contains a subsequence which converges almost certainly to some random variable.

Proof. We select a sequence $\langle \epsilon_j \rangle$ of decreasing positive numbers such that $\sum_{j=1}^{\infty} \epsilon_j \langle \infty$. It follows from the assumptions of the lemma that there exists for each positive integer j a number N_j such that for $m, n \geq N_j$, $P(|X_m - X_n| > \epsilon_j) \langle \epsilon_j \rangle$. We define a sequence $\langle n_j \rangle$ of integers by setting $n_1 = N_1$, $n_{j+1} = \max(n_{j+1}, N_{j+1})$ for $j = 1, 2, \cdots$ Then we have $n_1 \langle n_2 \rangle \cdots$ and

(2.6)
$$P(|X_{n} - X_{n}| > \epsilon_{j}) < \epsilon_{j}, (j=1, 2, \cdots).$$

Hence, we have from (2.6) that

$$(2.7) P(B_k) \ge 1 - \sum_{i=k}^{\infty} P(A_i^C) \ge 1 - \sum_{j=k}^{\infty} \epsilon_j,$$

where $A_j = \{w : |X_n - X_n| \le \epsilon_j\}$ and $B_k = \bigcap_{j=k}^{\infty} A_j$. Let $\epsilon > 0$ and $\delta > 0$ be two arbitrary numbers and

select k sufficiently large that $\sum_{j=k}^{\infty} \epsilon_j \leq \min(\epsilon, \delta) = \eta$. Let m be an integer such that m $\geq k$ and v be

an arbitrary positive integer and put r=m+v. Then the event B_k implies that $\sum\limits_{j=m}^{r-1}|X_{n_{j+1}}-X_{n_{j}}| \leq \sum\limits_{j=m}^{r-1}|X_{n_{j+1}}-X_{n_{j}}| \leq \sum\limits_{j=m}^{r-1}|X_{n_{j+1}}-X_{n_{j+1}}-X_{n_{j+1}}| \leq \sum\limits_{j=m}^{r-1}|X_{n_{j+1}}-X_{n_{j+1}}-X_{n_{j+1}}| \leq \sum\limits_{j=m}^{r-1}|X_{n_{j+1}}-X_{n_{j+1}}-X_{n_{j+1}}| \leq \sum\limits_{j=m}^{r-1}|X_{n_{j+1}}-X_{n_{j+1}}| \leq \sum\limits_{j=m}^{r-1}|X_{n_{j+1}}-X_$

 $\epsilon_{j} \leq \eta$. Since $|X_n - X_n| = \sum_{j=m}^{r-1} (X_n - X_n)|$, we see that $B_k \subset \{w : \sup_{v} |X_n - X_n| \leq \epsilon\}$, provided that $m \geq k$. Therefore, using (2.7) we have

$$P(\sup_{n=+\infty} |X_n| \ge \epsilon) \ge P(B_k) \ge 1 - \sum_{i=k}^{\infty} \epsilon_i \ge 1 - \eta,$$

so that

$$P(\sup_{v}|X_{m_{m+v}}-X_{m_{m}}|>\epsilon)\leq\delta \text{ if } m\geq k.$$

This means that for any $\epsilon > 0$

$$\lim_{n\to\infty} P(\sup |X_n - X_n| > \epsilon) = 0.$$

It then follows from Lemma (2.1) that the subsequence $\langle X_n \rangle$ converges almost certainly to some andom variable. Q.E.D.

Now, we are ready to prove our main theorems, Cauchy-type criterions for convergence in probability and in r-th mean.

Theorem (2.3). The following two statements are equivalent:

$$P\lim_{n\to\infty}X_n=X_n$$

(b) It is possible to find an integer $N=N(\epsilon,\delta)$ corresponding to every $\epsilon>0$, $\delta>0$, such that $P(|X_n-X_m|>\epsilon)<\delta$ for n,m>N.

Proof. Assuming the statement (a), we first prove that there exists an integer $N=N(\epsilon,\delta)$ for every $\epsilon>0$ and $\delta>0$ such that $P(|X_n-X|>\epsilon)<\delta$ for $n\geq N$. Choose integers n and m such that $n, m>N(\frac{\epsilon}{2}, \frac{\delta}{2})$, and define the sets

$$A = \left\{ w : |X_n - X| \leq \frac{\epsilon}{2} \right\}, \quad B = \left\{ w : |X_m - X| \leq \frac{\epsilon}{2} \right\}, \quad C = \left\{ w : |X_n - X_m| \leq \epsilon \right\}.$$

It then follows from the implication rule that

$$P(|X_n - X_m| > \epsilon) \le P\left(|X_n - X| > \frac{\epsilon}{2}\right) + P\left(|X_m - X| > \frac{\epsilon}{2}\right) \le \delta,$$

which implies the statement (b).

In the next, assume the statement (b). Then the sequence $\langle X_n \rangle$ satisfies the assumptions of Lemma (2.2); therefore $\langle X_n \rangle$ contains a subsequence $\langle X_{np} \rangle$ which converges almost certainly to some random variable X. Again, define three sets

$$S = \left[w : |X_n - X_{n_b}| \le \frac{\epsilon}{2} \right], \quad T = \left[w : |X_{n_b} - X| \le \frac{\epsilon}{2} \right], \quad U = \left\{ w : |X_n - X| \le \epsilon \right\},$$

and applying the implication rule see that

$$P\left(|X_n - X| > \epsilon\right) \le P\left(|X_{n_b} - X| > \frac{\epsilon}{2}\right) + P\left(|X_n - X_{n_b}| > \frac{\epsilon}{2}\right).$$

If we choose $n_p > n$ and n sufficiently large, then the righthand side of the last inequality can be made arbitrary small. Hence we have the statement (a). Q.E.D.

Theorem (2,4). The following two statements are equivalent:

$$L_r - \lim_{n \to \infty} X_n = X_n$$

(b) It is possible to find an integer $N=N(\epsilon)$ for any $\epsilon>0$ such that $E(|X_m-X_n|^r)\leq \epsilon$ for $m,\geq N$. **Proof.** First of all, assume the statement (a). Using the inequality $|a+b|^r\leq 2^r(|a|^r+|b|^r)$, we see that

$$E(|X_m - X_n|^r) = E(|(X_m - X) + (X - X_n)|^r) \le 2^r E(|X_m - X|^r) + 2^r E(|X_n - X|^r).$$

It then follows from our assumption that the right-hand side of the above inequality can be made arbitrary small by choosing m and n sufficiently large so that our statement (b) is proved.

In the next, assume the statement (b). Choose two arbitrary positive numbers ϵ and δ , and put $\epsilon_1 = \epsilon \delta^r$. According to our assumption, there exists an integer $N = N(\epsilon_1)$ such that

(2.8)
$$E(|X_m - X_n|^r) \leq \epsilon_1 = \epsilon \delta^r \text{ for } n, m \geq N.$$

Therefore we have, for n, m≥N

$$\begin{split} \mathrm{E}(|\mathrm{X}_{m}-\mathrm{X}_{n}|^{r}) &= \int_{-\infty}^{\infty} |\mathrm{X}_{m}-\mathrm{X}_{n}|^{r} \mathrm{dF}(\mathbf{x}) \\ &= \int_{|\mathrm{X}_{m}-\mathrm{X}_{n}|^{r} \geq \delta} |\mathrm{X}_{m}-\mathrm{X}_{n}|^{r} \mathrm{dF}(\mathbf{x}) + \int_{|\mathrm{X}_{m}-\mathrm{X}_{n}|^{r} \leq \delta} |\mathrm{X}_{m}-\mathrm{X}_{n}|^{r} \mathrm{dF}(\mathbf{x}) \\ &\geq \delta^{r} \int_{|\mathrm{X}_{m}-\mathrm{X}_{n}|^{r} \geq \delta} \mathrm{dF}(\mathbf{x}) = \delta^{r} \mathrm{p}(|\mathrm{X}_{m}-\mathrm{X}_{n}|^{r} \geq \delta), \end{split}$$

provided that F(x) is a distribution function. Hence, we have

$$P(|X_m - X_n| r \ge \delta) \le \frac{1}{\delta r} E(|X_m - X_n| r) \le \frac{\epsilon_1}{\delta r} = \epsilon,$$

from which we may conclude from Theorem (2.3) that the sequence $\langle X_n \rangle$ converges in probability; i.e., X=Plim Xn. Therefore,

$$0 = \lim_{n \to \infty} P(|X_n - X| \ge \epsilon) = \lim_{n \to \infty} P|(X_n - X_m) - (X - X_m)| \ge \epsilon),$$

$$P\lim_{n \to \infty} (X_n - X_m) = X - X_m \text{ and } P\lim_{n \to \infty} |X_n - X_m|^r = |X - X_m|^r.$$

so that

$$P\lim (X_n - X_m) = X - X_m \text{ and } P\lim |X_n - X_m|^r = |X - X_m|^r$$

Finally, we may conclude from (2.8) that statement (a) holds. Q.E.D.

REFERENCES

- 1. Takeyuki Hida, Stationary Stochastic Processes, Princeton University Press, 1970.
- 2. Heinz Bauer, Probability Theory and Elements of Measure Theory, Holt, Rine Hart and Winston, 1968.
- 3. V.S. PuGachev, Theory of random Functions, Translated by O.M. Blunn, Pergmon Press, 1965.
- 4. J.G. Kemeny, J.L. Snell, & A.W. Knapp, Denumerable Markov Chains, D. Van Nostrand Company, 1966.