BENBNE AT (MENE) Journal of the Korea Society of Mathematical Education
1976, 12, Vol. XV No, 1 Dec. 1976 Vol. XV No,1

‘CAUCHY-TYPE CRITERION FOR STOCHASTIC CONVERGENCE
by
In Whan Chung

Yonsei University, Seoul, Korea

1. DEFINITIONS AND NOTATIONS

In the present paper we shall always tacitly assume that a probability space (2, I, P) is given
and that all random variables are defined on this space. For our further discussions, several defin-
itions will be given first of all.

Definition (1.1). A sequence of random variables <Xn>> converges almost certainly to zero if
P(im X.=0)=1, We express this statement by the notation a.c.l. X,=0,

no n-e

Definition (1.2). A sequence of random variables <{X,>> converges almost certainly to a random
variable X if the sequence <'X»—X>> converges almost certainly to zero. This statement will be
expressed as a.c.l. Xp=X,

Definition (1.3). A sequence of random variables <{Xn.> converges in probability to a random
variable X if lim P(|Xa—X|>>€) =0 for any €>0. This statement will be expressed as Plim X,=X.,

[

Definition (1.4). A sequence of random variables <{X,>> converges in the r-th mean to a random
variable X if all X» and X have finite moments of order r>0 and if lim E{X,—X|r=0, This state-
ment will be expressed as L,—lim X,=X,

Gl

Now, consider the inequality
1.1 1 Xi—X|<e
for an arbitrary positive number €, where X is a fixed random variable and <X;>is a sequence of
real random variables. Then the sets Aj, (= {w : |{X;j—X|<€} and An »= (W' |Xnov—Xa|<e} are
subsets of the sample space Q. Define the sets
Bn, e ﬁAj, €; A= ﬁA‘n, vs Baf= ﬁAk;
j v=1 h=n

=n

1.2) B =;L='J1B,.'; B ig By, «.

L]

‘Then, we have Be=UJ ﬁA,-,;:lin; Inf Aj e, and see that the sets Aj ¢ Anyuv Bnye An% BaS,
n i

n=1 j=

Br, and B, belong to 11. Clearly B, is the event that inequality (1.1) holds for almost all j simul-



taneously. Let <{&,>> be a sequence of positive numbers such that lim €,=0, Again we can defins
V_.ou

the set B for each and the set B:ref1 B... Then we have again Bell. The set B is the event that
=

for any €>9, however small, the inequality (1.1) holds for almost all J; in other words, B is the
event such that lim X,=X, It is well known fact that if Plim X,=X and h(X) is a continuous

function then Plim h(X,) =h(X) and lim E(h(X»))=Eh(X)).

2. MAIN RESULTS

In the present section, our main results will be proved.
Lemma (2.1). We have
2.1) a.cl. Xa=X if, and only if lim P(sup|Xp+v—Xa]|<0) =1 for every >0,
n—o v

g

Proof. First of all, we prove that the condition is necessary. Since|Xn,o—Xa|<|Xno—X|+1Xn
—XI, we see that Anyy, e,2)An, e,2C A%, 5, s0 that B, e,2CAnse, ¢,2An, £,2CA%, » for allv.
Hence we have

(2. 2) Bn, e/ZCAn‘.
As¢ is the event that the inequalities |Xn.o—Xas]<Ce hold simultaneously for all v; in other words,
(2- 3) Apt= {W :eslllzplxn-w"’xn l gf} .

Hence we may conclude from (2.2) and (2.3) that
P(SuplX"+v_Xn] ZP (Bn, 6/2).
This relation together with the inequality
lim P(Bs,¢,2) =lim P(N {w : [X;—X| <@ lim P(a.c.l. Xa=X)=1,
n—oo R0 j=n e n—ow
obtained from the definitions (1.1) and (1.2), imply our assertion
lim P(Sup’Xn-w—Xn’Sa =1.

To prove the sufficiency of the condition, we note first of all that for any integer q>n
Anf2C {w [ [ Xgo—Xal <e/2 N {w 1 [ Xg—Xa|<Le/2) C WX~ X, | <e/2),
which are equivalent to An8/2C A%, , for all q>>n and all v, Hence, we have A.£/2CA, for all
q>>n, so that Aqf72CB.¢ and '
2.4 lim P(An5"%) S,lil_xg PB.) =P(B9.

P e

Therefore, using (2,4) and the condition lim P(sup?|Xns.v—Xa|<0)=1, we may conclude that

for any fixed €>0

2.5 P(B9) =1.

Let ¢, be a decreasing sequence of positive numbers such that lim €,=0, and form the set B:ﬁ
B, Then P(B)=1 from (2.5). Since the sequence <X;>> satisfies the Cauchy condition on every
point of the set B, there exists a function Y=Y (w) such that lim X.(w)=Y(w) for all weB.



Extending this function to the whole space ) by defining

_[Y(w), if weE
X(W) =10, if 'weBC

Since P(B) =0, we see that a.c.l. X.=X. Q.E.D.

n—oo

Lemma (2.2). Let <X,>> be a sequence which has the property that for any €>0, >0 there
exists an integer N=N (¢;0) such that P(|Xa—Xnm|>)<d, provided that m,n>N, then the sequ-
ence < Xn> containd a subsequenc which converges almost certainly to some random variable.

Proof. We select a sequence <¢;>> of decreasing positive numbers such that 3 %= €;<loco, It
follows from the assumptions of the lemma that there exists for each positive integer j a number
N; such that for m, n>N;, P(|Xm—Xa| >€))<ej, We define a sequence <{n;> of integers by setting
m=Ni, nja=max(nj,, Nju) for j=1,2, - Then we have m<lnz<l-+- and

(2.6) P( Ixni—Xr;,ﬂ 1>€) <€, (=1,2, ).
Hence, we have from (2.6) that
@7 P(B)>1- SP(AA =1~

j=k -

where Aj={w . |Xa ~Xs 1Ige,-} and By= ﬁ‘A;. Let €>0 and 6>>0 be two arbitrary numbers and
i i=
select k sufficiently large that iﬁ ¢;<min(e, 0) =7, Let m be an integer such that m>k and v be
l:

r-1 r-1
an arbitrary positive integer and put r=m+v, Then the event B; implies that _Z}]X"J_+1—X,. <3
j=m i

j=m
r-1
€;<n. Since |Xpn —Xa |:_Z;(X,.I.+I—X,..) |, we see that BsC{w: supIX..’ll+ —Xa 16},
r m =m J v e n
provided that m>k. Therefore, using (2.7) we have
P(suplXs  —Xa |20 2P@)21- L6217,

so that
P(sup|X —Xnml>€)35 if m>k,

m+v

This means that for any €>0
lim P (sup [ X"m+,_x" J>a9=0.

It then follows from Lemma (2.1) that the subsequence <X";> converges almost certainly to some

andom variable, QED

Now, we are ready to prove our main theorems, Cauchy-type criterions for convergence in prob-
ability and in r-th mean.

Theorem ¢2.3). The following two statements are equivalent:
(a) Plim X, =X,

(b) It is possible to find an integer N=N(¢, 6) corresponding to every €>0, 9>0, such that
P(|Xa—Xn| >€) <0 for n,m>N,



Proof. Assuming the statement (a), we first prove that there exists an integer N=N(¢, ) for
every € >0 and 0>0 such that P(]Xa—X|>€)<(0 for n>>N. Choose integers n and m such that

n, m>N(—§~. %), and define the sets

r
A=lw: Xe=XI<g], B={w: Xa-XI<g], C=(w: |Xi—Xal<a.
It then follows from the implication rule that
€ 3
P(|Xa—Xnl >0 <P(1Xe—X[>5) + P (1Xa—X|>5) <0,
which implies the statement (b).
In the next, assume the statement (b). Then the sequence <(X,>> satisfies the assumptions of

Lemma (2.2); therefore <X.>> contains a subsequence <{X,,>> which converges almost certainly

to some random variable X, Again, define three sets
= . —_ i = N —_ i = N —_—
s=[w: 1Xe—XuI<5), T=[w: X -XI<$], U=(w: [X—X|<d,
and applying the implication rule see that
€ €
P (1 Xe—X|> <P (1Xs ~XI>5)+ P (1Xe—Xn [>5).
If we choose n,>n and n sufficiently large, then the righthand side of the last inequality can be
made arbitrary small. Hence we have the statement (a). Q.E.D.

Theorem (2.4). The following two statements are equivalent:
(@) L, ~lim X,=X,

=

(b) 1t is possible to find an integer N=N(¢) for any €>0 such that E(|Xn—Xa|") <e for m, >N.

Proof, First of all, assume the statement (a), Using the inequality ja+b|*<<27(laj7+|b}"),
we see that

E(|Xn—Xa|) =E(] Za—X) + X~Xn) |)KZE(|Xn—X]|") +2E(|X.—X[").

It then follows from our assumption that the right-hand side of the above inequality can be made
arbitrary small by choosing m and n sufficiently large so that our statement (b) is proved.

In the next, assume the statement (b). Choose two arbitrary positive numbers € and 8, and put
€1=€d”, According to our assumption, there exists an integer N=N(e;) such that
(2.8) E(|Xn—Xn|") <e1=€6" for n, m>N,
Therefore we have, for n, m>N

E(|Xn—Xal) =["_[Xn—XaldF )
= Xm—Xa|7dF (x) + Xm—Xz|dF
5|x,.-x,.|rza' I7dF () + M S S
=0 dF () =07p (| Xn—Xa|r>9),
jlxm—xnvza (®) =5p (| Xn—Xal"20)

provided that F(z) is a distribution function. Hence, we have

P (| Xa—Xal 28 <5 E(|Xn— XY <=,



from which we may conglude from Theorem (2. 3) that the sequence <X»> converges in probab-
ility; i.e., X=Plim X,. Therefore,

OzhmP(]X,.—XIZE) =lim PI (Xn"xm) - (X_Xm) 126)’
so that Plim (Xn—Xm) =X—Xm and Plim|Xn—Xn|"=|X—=Xnl|".
"—o“

n—o

Finally, we may conclude from (2.8) that statement (2) holds. Q.E.D.
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