On the Characteristic Orthogonal Nonholonomic Frames in Vn

by

Jin Oh Hyun

Jeju National University, Jeju, Korea

1. INTRODUCTION

Introducing a set of 4 linearly independent basic null vectors V. Hlavaty ([3]) introduced the concept of the nonholonomic frames and used it successfully as a tool to develop the algebra of the unified field theory in the space-time X₄. In our previous paper ([2]) we introduced the concept of the general nonholonomic frames and orthogonal nonholonomic frames to an n-dimensional Riemannian space Vn and investigated their elementary properties.

This paper is a direct continuation of [2]. The purpose of the present paper is to construct the characteristic orthogonal nonholonomic frame of Vn determined by a symmetric tensor $a_{\lambda\mu}$, composed of n different eigenvectors of $a_{\lambda\mu}$, and to derive its particular properties.

2. PRELIMINARY RESULTS

In this section, results obtained in our previous paper [2], which are necessary for our furtherdiscussions, will be introduced without proof.

Let V_n be a n-dimensional Riemannian space referred to a real coordinate system x^{ν} and defined by a fundamental metric tensor $h_{\lambda\mu}$, whose determinant

$$(2.1) h = Det((h_{\lambda\mu})) \neq 0.$$

According to (2.1) there is a unique tensor $h^{\lambda\nu} = h^{\nu\lambda}$ defined by

(2. 2)
$$def h_{\lambda \mu} h^{\lambda \nu} = \delta_{\mu}^{\nu}.$$

The tensors $h_{\lambda\mu}$ and $h^{\lambda\nu}$ will serve for raising and lowering indices of tensor quantities in V_n in the usual manner.

If e', (i=1, ..., n), are a set of n linearly independent unit vectors, then there is a unique recip-

rocal set of n linearly independent covariant vectors $\stackrel{1}{e_{\lambda}}$, (i=1, ..., n), satisfying

(2.3)
$$\begin{array}{c}
i \\ e^{\nu}e_{\lambda} = \delta_{\lambda^{\nu}}, & e^{\lambda}e_{\lambda} = \delta_{j}^{i}. \\
i & j
\end{array}$$

With the vectors e^{ν} and e_{λ} a nonholonomic frame of V_n is defined in the following way: If T_{λ}^{ν} :

-are holonomic components of a tensor density of weight p, then its nonholonomic components are defined by

(2.4)a
$$T_{\lambda}^{i} = A^{-p} \quad T_{\lambda}^{\nu} = e_{\nu} e^{i\nu}, \quad A = Det(e_{\lambda}).$$

An easy inspection of (2.3) and (2.4) a shows that

$$(2.4)b T_{2}^{\nu} = A^{p}T_{1}^{\nu} = A^{p}T_{1}^{\nu}$$

The nonholonomic frame in V_n constructed by the unit vectors e^{ν} , $(i=1,\dots,n)$, tangent to the n congruences of an orthogonal ennuple, will be termed an orthogonal nonholonomic frame of V_n .

With respect to an orthogonal nonholonomic frame of V_n , we have

Theorem (2.1). We have

(2.5)
$$h_{ij}=\delta_{ij}, h^{ij}=\delta^{ij}; e^{\nu}=e^{\nu}, e_{\lambda}=e_{\lambda}.$$

Theorem (2, 2). The tensors $h_{\lambda\mu}$, $h^{\lambda\mu}$, and δ_{λ}^{ν} may be expressed in terms of e, as follows:

(2. 6)
$$h_{\lambda\mu} = \sum_{i \neq 1} e_{i} e_{i}$$
, $h^{\lambda\mu} = \sum_{i \neq 1} e^{\lambda} e^{\mu}$, $\delta_{\lambda}^{\nu} = \sum_{i \neq 1} e_{\lambda} e^{\nu}$.

3. CHARACTERISTIC ORTHOGONAL NONHOLONOMIC FRAMES.

Let e^{λ} be unit eigenvectors determined by a symmetric covariant tensor $a_{\lambda\mu}$. Then they satisfy

(3.1)
$$(a_{\lambda\mu} - Mh_{\lambda\mu}) e^{\lambda} = 0, \quad (M: \text{ scalars}).$$

It is assumed that the characteristic equation of (3.3) has n different real roots M, so that we have n different mutually orthogonal unit eigenvectors e^{λ} , $(n=1, \dots, n)$. The nonholonomic frame in V_n constructed by these eigenvectors e^{λ} will be called the characteristic orthogonal nonholonomic frame determined by the tensor $a_{\lambda\mu}$. Our further discussions will be restricted to the characteristic orthogonal nonholonomic frames only.

For our further discussions, we need the tensors $^{(p)}a_{\lambda\mu}$, defined as

A simple inspection shows that $^{(p)}a_{\lambda\mu}$ is symmetric.

Lemma (3.1). Every eigenvector e^{λ} of $a_{\lambda\mu}$ is also an eigenvector of the tensor $p = 2, 3, \cdots$.

Proof. We prove our assertion by induction on p. First, we have according to (3.1)

$${}_{i}^{(p)}a_{\lambda\mu}e^{\lambda}=a_{\lambda\alpha}a_{\mu}{}^{\alpha}e^{\lambda}=(a_{\lambda\alpha}e^{\lambda})a_{\mu}{}^{\alpha}=(Mh_{\lambda\alpha}e^{\lambda})a_{\mu}{}^{\alpha}=M(a_{\lambda\mu}e^{\lambda})=M^{2}h_{\lambda\mu}e^{\lambda},$$

which proves our assertion for the case p=2. Assume that it is true for the case p=m-1. We

^(*) Throughout the present paper, Greek indices take values 1, 2, ..., n unless explicitly stated otherwise and follow the summation convention, while Roman indices are used for the nonholonomic components of a tensor and run from 1 to n. Roman indices also follow the summation convention.

then have, in a similar manner

(3.3)
$$(^{(m)}a_{\lambda u} - M^m h_{\lambda \mu})e^{\lambda} = 0,$$

Which again proves our assertion for the case p=m. Therefore, ei is an eigenvector of (p) alp.

Theorem (3.2). The nonholonomic components of ${}^{(p)}a_{\lambda\mu}$ are

(3.4)
$${}^{(p)}a_x{}^i=M^p\delta_x{}^i, \text{ or } {}^{(p)}a_{xi}=M^p\delta_{xi}, \text{ (p=1, 2, 3, ...)}.$$
Proof. Multiplying both sides of (3.3) by e^μ and using (2.4)a and (2.5), we have

$$a_{\lambda\mu}^{(p)} = M^p h_{\lambda\mu} e^{\lambda} e^{\mu}, \text{ or } i^{(p)} = M^p \delta_{ij},$$

which shows the second relation of (3.4).

Theorem (3.3). The tensor $^{(p)}a_{\lambda\mu}$ may be expressed in terms of e^{λ} , as follows:

(3.5)
$${}^{(p)}a_{\lambda\mu}=\sum_{i}M_{i}^{p}e_{\lambda}e_{\mu}, (p=1, 2, 3, \cdots).$$

Proof. By means of (3.4), (2.4)b, (2.5), our assertion follows as:

Remark. In case of p=1, Theorem (3,3) represents the well known expression of the tensor ale in Riemannian geometry.

REFERENCES

- [1]. K.T. Chung & H.W. Lee, n-dimensional considerations of indicators, Yonsei Nonchong, Vol-12, 1975.
- [2]. K.T. Chung & J.O. Hyun, On the nonholonomic frames of V_n, Yonsei Nonchong, Vol. 13, 1976.
- [3]. V. Hlavaty, Geometry of Einstein's unifield theory, P. Noordhoff Ltd., 1957