Removal of Carbon Monoxide from Anthracite Flue Gas by Catalytic Oxidation (I)

촉매반응에 의한 연탄 연소가스로부터 일산화탄소의 제거 (제1보)

  • 정기호 (한국과학기술원 화학 및 화학공학과) ;
  • 이원국 (한국과학기술원 화학 및 화학공학과)
  • Published : 1976.10.30

Abstract

On the condition of adequate air supply, complete removal of carbon monoxide,occurred above $650^{\circ}C$. Using catalysts, the oxidation of carbon monoxide occurred at lower temperatures; on both $MnO_2 \;and\;30%\;MnO_2-70%\;CuO\;at\;250{\circ}C,\;on\;CuO\;at\;450{\circ}C,\;on\;50%\;MnO_2-50%\;CuO\;at\;200{\circ}C,\;and\;on\;70%\;MnO_2-30%\;CuO\;at\;180{\circ}C$. Manganese dioxide (p-type) showed higher activity than cupric oxide (n-type) and a catalyst consisting of 60% $MnO_2-40%$ CuO had the highest activity of all the $MnO_2$-CuO mixture. Over the range of transitional temperature, carbon monoxide removal efficiency decreased linearly with increasing inlet carbon monoxide concentration while temperature was fixed. Residence time of gases in the catalytic reactor, in the range of 0.9 to 1.8 seconds, gave no effect on carbon monoxide conversion.

연탄 연소가스중의 일산화탄소와 산소 사이의 반응을 몇가지 촉매에 대해 조사했다. 이산화망간, 산화 동 및 그 혼합촉매를 사용하였으며, 그 실효반응 온도(effective reaction temperature)는 각각 다음과 같다. 즉, $MnO_2$ 단독촉매 및 30% $MnO_2$-70% CuO 혼합촉매는 $250^{\circ}C,\;CuO$$450^{\circ}C$, 50% $MnO_2$-50% CuO는$200^{\circ}C$, 70% $MnO_2$-30% CuO는$180^{\circ}C$였다. 실효반응온도 이하에서 일산화탄소의 산화율은 일산화 탄소의 농도가 증가함에 따라 감소하는 경향을 보였으며, 실효반응 온도 이상에서는 변화가 없었다. 반응기 내 체재시간은 0.9 ∼ 1.8초의 범위 내에서는 일산화탄소 산화반응에 조금도 영향을 주지 않았다.

Keywords

References

  1. Daehan Hwahak Hwoejee v.9 K.S. Lee;B.S. Chung
  2. Adv. in Cat. v.11 P.L. Walker, Jr.;F. Rusinko, Jr.;L.C. Austin
  3. Trans. Faraday Soc. v.47 J.R. Arthur
  4. J. Cat. v.28 C. Morterra;M.J. D. Low
  5. J. Cat. v.3 L. J. E. Hofer;P. Gussey;R.B. Anderson
  6. Catalytic Processes and Proven Catalysts C.L. Thomas
  7. Daehan Hwahak Hwoejee v.16 T.H. Hahn;C.S. Lee;S.S. Shin
  8. Daehan Hwahak Hwoejee v.11 T.H. Hahn
  9. Daehan Hwahak Hwoejee v.16 J.E. Hwang;M.Y. Son
  10. STF 69-2 Study on the Development of Detector, Detecting Device and Alarm System of Toxic Gases Liberated from Anthracite Briquette Y.S. Kim(et al.)
  11. R-71-53 Study on Briguette Gas Elimination N.K. Lee(et al.)
  12. NIRI v.20 S.S. Oh;C.S. Choe
  13. NIRI v.21 S.S. Oh;C.S. Choe
  14. Daehan Hwahank Hwoejee v.11 J.E. Hwang;M.Y. Son
  15. Encyclopedia of Chemical Technology v.4 R.E. Kirk;D.F. Othmer
  16. Zeitschrift fur Electrochemie v.58 G.M. Schwab;J. Block
  17. Chem. Eng. R.L. Moss
  18. Introduction to the Principles of Heterogeneous Catalysis J.M. Thomas;W.J. Thomas
  19. Adv. in Cat. v.12 T.H. Wolkenstein
  20. J. Chem. Soc. W.E. Garner
  21. Adv. in Cat. v.20 P.C. Gravelle;S.J. Teichner
  22. Adv. in Cat. v.13 F.S. Stone
  23. J. Amer. Chem. Soc. v.75 G. Parravano
  24. Ind. Eng. Chem. v.12 M.C. Teague
  25. J. er Am. Chem. Soc. v.77 R.J. Kokes;H. Tobin, J.r.;P.H. Emmet
  26. Adv. in Cat. v.1 R.H. Griffith
  27. Daehan Hwanak Hwoejee v.13 J.S. Choi;K.H. Kim
  28. Air Pollution H.C. Parkins
  29. Fuels and Combustion M.L. Smith;K.W. Stinson