Direct Non-stepwise Multiple Quantum Excitations in Translation-Vibration Energy Transfer

竝進-振動에너지 變換에 있어서의 多量子 直接 振動 勵起

  • 김유항 (仁荷大學校 理科大學 化學科) ;
  • 신형규 (美國 네바다大學校 化學科)
  • Published : 1976.04.30

Abstract

Effects of direct multiple quantum excitations in vibrational energy transfer were investigated. Vibrational transition probabilities for 0${\rightarrow}$2, 0${\rightarrow}$3, and 0${\rightarrow}$4 excitations were explicitly formulated including both direct 0→n excitations and stepwise single quantum processes. For the formulation the perturbing force was derived from the exponential potential including terms up to fourth order in the vibrational amplitude. The head-on collinear collision model between a harmonic oscillator and an incident particle was employed, and the formulation was based on the semiclassical approximation. Numerical results were obtained for five different collision systems (Ar${\cdots}$O-N, He${\cdots}$H-H, He${\cdots}$H-Cl, 5${\cdots}$1-2, 2${\cdots}$12-12). Comparison between the present results and those obtained using the linearized interaction potential showed that the overall effect of including the direct multiple quantum transition is to decrease the probabilities at low collision energies and to increase them at high energies. The present results were found to be significantly different from those obtained using the linearized potential for collision systems He${\cdots}$H-H, He${\cdots}$H-Cl, and 5${\cdots}$1-2. For systems Ar${\cdots}$O-N and 2${\cdots}$12-12 the differences were negligible.

竝進-振動에너지 變換에 있어서 中間에너지 準位를 거치지 않는 直接勵起가 多量子 振動천이에 미치는 영향을 理論的으로 조사하였다. 衝突 모형은 直線 충돌이며, 分子間의 포텐셜은 指數函數型의 것을 振動좌표(q)로 전개하고 四次項 $(q^4)$까지 包含시켜 사용하였다. $q^2$, $q^3$, $q^4$를 포함시켰을 때의 천이 확률 $(P_{m{\rightarrow}n})$에 對한 一般式을 各各 유도하고, 몇개의 충돌계에 대하여 그 값들을 계산하였다.結果를 線型化시킨 포텐셜(q)을 사용한 경우의 結果와 比較하고 直按 多量子 振動遷移가 重要한 役割을 하게 되는 條件 파라미터 ${\nalpha}$ 및 m과 관련시켜 제시하였다.

Keywords

References

  1. Chem. Rev. v.69 D. Rapp;T. Kassal
  2. J. Chem. Phys. v.38 W.J. Hooker;R.C. Millikan
  3. J. Chem. Phys. v.36 E. Bauer;F.W. Cummings
  4. J. Chem. Phys. v.43 C. Treanor
  5. J. Chem. Phys. v.38 T.E. Sharp;D. Rapp
  6. J. Chem. Phys. v.52 P.C. Cosby;T.F. Moran
  7. Chem. Phys. Lett v.5 M.A. Wartell;R.J. Cross, Jr.
  8. J. Chem. Phys. v.54 F.E. Heidrich;K.R. Wilson;D. Rapp
  9. Quantum Mechanics v.1 K. Gottfried
  10. Scattering Theory of Waves and Particles R.G. Newton
  11. Prog. Theo. Phys. (Kyoto) v.11 K. Takayanagi
  12. Kgl. Danske. Videnskab. Salskab. Mat. Fys. Medd. v.32 K. Alder;A. Winther
  13. J. Chem. Phys. v.40 K.H. Kramer;R.B. Bernstein
  14. J. Chem. Phys. v.44 K.H. Kramer;R.B. Bernstein
  15. J. Chem. Phys. v.47 R.W. Fensternacker;R.B. Bernstein
  16. Chem. Phys. Lett. v.5 M.A. Wartell;R.J.Cross, Jr.
  17. J. Phys. Chem. v.75 H.K. Shin
  18. J. Phys. Chem. v.76 H.K. Shin
  19. Quantum Mechanics v.1 A. Messiah
  20. Commun. Pure Appl. Math. v.7 W. Magnus
  21. Docklady Akad. Nauk USSR(N.S.) v.57 E.B. Dynkin
  22. J. Chem. Phys. v.44 J.D. Kelley;M. Wolfsberg
  23. J. Chem. Phys. v.45 D. Secrest;B.R. Johnson
  24. Spectra of Diatomic Molecules G. Herzberg
  25. Helv. Phys. Acta v.36 D.W. Robinson
  26. Nuclear Phys. v.25 D.W. Robinson
  27. Thermodynamics and Physics of Matter, Princeton Univ. K.F. Herzfeld
  28. J. Chem. Phys. v.44 C. Treanor
  29. J. Chem. Phys. v.43 T.E. Sharp;D. Rapp