Abstract
The significant structure theory of liquids and the Bragg-Williams approximation of phase transition theory have been applied to the calculation of the thermodynamic properties of p-azoxyanisole which exhibits a liquid crystal phase of the nematic type. The isotropic phase was treated as a normal liquid; and for the nematic phase, in addition to its liquidity, the effect due to the arrangement of molecular-dipoles was considered. The liquidity of the p-azoxyanisole was described by the significant structure theory of liquids, and the Bragg-Williams approximation was used to consider the effect due to the arrangement of molecular-dipoles. The molar volume, vapor pressure, heat capacity at constant pressure, thermal expansion coefficient, compressibility, entropy and enthalpy change at the nematic-isotropic phase transition point, absolute entropy, and absolute Helmholtz free energy were calculated over the temperature range of the nematic and isotropic phases. The calculated results of the thermodynamic properties were compared with the experimental data.
액체에 대한 significant structure theory 와 상의 전이에 대한 Bragg-Williams근사를 사용하여 액정 화합물인 p-azoxyanisole의 열역학적 성질을 nematic phase와 isotropic phase의 온도범위에 걸쳐 계산하였다. Isotropic phase는 일반적인 액체로 보았으며 nematic phase는 액체적인 성질외에도 분자쌍극자의 배열에 의한 영향도 고려하였다. p-Azoxyanisole의 액체적인 성질은 significant structure theory로 기술하였으며 분자쌍극과 배열에 의한 영향은 Bragg-Williams 근사로써 고려하였다. 부피, 증기압, 정압비열, 열팽창계수, nematic-isotropic 전이점에서의 엔트로피 엔탈피 변화, 절대엔트로피, Helmholtz free energy등을 계산하여 실험치와 비교하였다.