Theoretical Prediction of the Thermodynamic Properties of Liquid-Crystalline p-Azoxyanisole

액정 p-Azoxyanisole의 열역학적 성질에 대한 이론적인 예측

  • Youngkyu Do (Department of Chemical Science, Korea Advanced Institute of Science, Center for Theoretical Physics and Chemistry) ;
  • Mu Shik Jhon (Department of Chemical Science, Korea Advanced Institute of Science, Center for Theoretical Physics and Chemistry) ;
  • Taikyue Ree (Department of Chemical Science, Korea Advanced Institute of Science, Center for Theoretical Physics and Chemistry)
  • 도영규 (한국과학원 화학 및 화학공학과 이론 물리 및 화학 센타) ;
  • 전무식 (한국과학원 화학 및 화학공학과 이론 물리 및 화학 센타) ;
  • 이태규 (한국과학원 화학 및 화학공학과 이론 물리 및 화학 센타)
  • Published : 1976.04.30

Abstract

The significant structure theory of liquids and the Bragg-Williams approximation of phase transition theory have been applied to the calculation of the thermodynamic properties of p-azoxyanisole which exhibits a liquid crystal phase of the nematic type. The isotropic phase was treated as a normal liquid; and for the nematic phase, in addition to its liquidity, the effect due to the arrangement of molecular-dipoles was considered. The liquidity of the p-azoxyanisole was described by the significant structure theory of liquids, and the Bragg-Williams approximation was used to consider the effect due to the arrangement of molecular-dipoles. The molar volume, vapor pressure, heat capacity at constant pressure, thermal expansion coefficient, compressibility, entropy and enthalpy change at the nematic-isotropic phase transition point, absolute entropy, and absolute Helmholtz free energy were calculated over the temperature range of the nematic and isotropic phases. The calculated results of the thermodynamic properties were compared with the experimental data.

액체에 대한 significant structure theory 와 상의 전이에 대한 Bragg-Williams근사를 사용하여 액정 화합물인 p-azoxyanisole의 열역학적 성질을 nematic phase와 isotropic phase의 온도범위에 걸쳐 계산하였다. Isotropic phase는 일반적인 액체로 보았으며 nematic phase는 액체적인 성질외에도 분자쌍극자의 배열에 의한 영향도 고려하였다. p-Azoxyanisole의 액체적인 성질은 significant structure theory로 기술하였으며 분자쌍극과 배열에 의한 영향은 Bragg-Williams 근사로써 고려하였다. 부피, 증기압, 정압비열, 열팽창계수, nematic-isotropic 전이점에서의 엔트로피 엔탈피 변화, 절대엔트로피, Helmholtz free energy등을 계산하여 실험치와 비교하였다.

Keywords

References

  1. Sci. Amer. v.211 J.L. Fergason
  2. Sci. Amer. v.222 G.H. Heilmeier
  3. J. Chem. Phys. v.43 L.C. Snyder
  4. J. Amer. Oil Chem. Soc v.45 J.L. Fergason;G.H. Brown
  5. Z. Physik. Chem v.226 H. Arnold
  6. J. Phys. Chem. v.71 E.H. Barrall, II;R.S. Porter;J.F. Johnson
  7. Z. Naturforsch v.15a W. Maier;A. Saupe
  8. Mol. Cryst., Liq. Cryst. v.10 R. Alben
  9. J. Chem. Phys. v.24 W.A. Hoyer;A.W. Nolle
  10. Mol. Cryst. Liq. Cryst. v.10 S. Chandrasekhar;R. Shashidhar;N. Tora
  11. Chem. Phys. Letters v.12 P. Papon;J.P. Le. Pesant
  12. Chem. Phys. Letters v.17 H. Imura;K. Okano
  13. Proc. Nat. Acad. Sci.(U.S.A.) v.72 S. Ma;H. Eyring
  14. Bull. Chem. Soc., Japan v.9 B. Tamamushi
  15. Acta Cryst. v.B26 W.R. Krigbaum;Y. Chatani;P.G. Barber
  16. Angew. Chem. Internat. Edit. v.7 A. Saupe
  17. J. Chem. Phys. v.56 N.W. Amer;Y.R. Shen
  18. Critical Rev. in Solid State Sci v.1 G. H. Brown;J. W. Doane;V. D. Neff
  19. J. Phys. Chem. v.66 R.S. Porter;J.F. Johnson
  20. J. Appl. Phys. v.34 R.S. Porter;J.F. Johnson
  21. J. Phys. Chem. v.68 E.M. Barrall, II;R.S. Porter;J.F. Johnson
  22. Trans. Far. Soc. v.60 E. Mclaughlin;M.A. Shakespeare;A.R. Ubbelohde
  23. J. Phys. Chem. v.76 F.P. Price;J.H. Wendorff
  24. Proc. Natl. Acad. Sci. (U.S.A.) v.44 H. Eyring;T. Ree;N. Hirai
  25. Significant Liquid Structures H. Eyring;M.S. Jhon
  26. Physical Chemistry-An Advanced Treatise v.VIII A M.S. Jhon;H. Eyring(ed.);D. Henderson(ed.);W. Jost(ed.)
  27. Physical Chemistry E.A. Moelwyn-Hughes
  28. Proc. Roy. Soc. v.A 145 W. L. bragg;E.J. Williams
  29. Physical Chemistry-An Advanced Treatise v.X H. Sato;H. Eyring(ed.);D. Henderson(ed.);W. Jost(ed.)
  30. J. Korean Chem. Soc. v.8 S. Chang;H. Paik;M.S. Jhon;W. S. Ahn
  31. J. Chem. Phys. v.44 M. S. Jhon;J. Grosh;T. Ree;H. Eyring
  32. J. Chem. Phys. v.54 B. J. Bulkin;F. T. Prochaska
  33. J. Phys. Chem. v.78 J. F. Salsky;E. Grushka
  34. Molecular Theory of Gases and Liquids J.O. Hirschfelder;C.F. Curtiss;R.B. Bird
  35. J. Chem. Phys. v.6 J.G. Kirkwood