A Technique to Improve the Fit of Linear
Regression Models
for Successive Sets of Data

Sung H. Park*

1. Introduction

In empirical study for fitting a multiple linear regression model for succes-
sive cross-sections data observed on the same set of independent variables
over several time periods, one often faces the problem of poor R2, the
multiple coefficient of determination, which provides a standard measure of
how good a specified regression line fits the sample data.

For a sample of size n for each cross-section, a full representation of the

model may be written as
K:X¢B+u¢ t:1, 2,"', T (1)

where ¥; and u, are nx1 and X, is nx (k41), assuming there are an intercept
term and k independent variables. The assumptions of the model (1) are,

for t=1,2,+.,T,

E(u) =0 2.1)
E(uu,)=02I 2.2)
rank (X) =k+1 (2.3)
X is fixed. (2.4)

One additional assumption that must be made for the model (1) is that there
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is possible correlation among the disturbances of any two time periods, ¢ and
¢, that is,
E(uiu)=po?l | ‘ 3

with a possible strong correlation between two consecutive time periods, —1
and ¢.

In practice, one often has sample data in the form of such cross sections.
For instance, in business and economics, situations arise where we wish to
consider the behavior of a dependent variable to a set of independent vari-
ables over a number of time periods. An example can be found in Chung
[1] where the market price of a common stock Is the dependent variable
and the independent variables are expected earnings per share, growth of
market price per share, and various indices of risk. His data were collected
on the same variables over a 10 year period.

An obvious approach to estimate the coefficients B; in equation (1) is the
application of the least squares method to each individual equation. Another
approach is to estimate all T equations in the model simultaneously. However,
because of the Assumptions (2.1 to 2, 4), it can be verified that the equation-
by-equation least squares will give the same estimates as do the least squares
applied to the entire set of equations simultaneously. A proof of this identity
may be found in Huang [5].

In empirical model-fitting by equation-by-equation least squares, we often
face a poor RZ, which means that the percentages of the variation in the
dependent variable explained by the independent variables are low. Such a
low R? discourages the use of the model to explain or predict the behavior
of the dependent variable from the independent variables. It is, therefore,
desirable to obtain as high an R? as possible.

A reason of poor R? may be from a model misspecification, i.e., omission
of some independent variables which should be specified in the model. The
problem of model misspecification has received considerable attention by

many researchers in the literature. Some of the authors are Griliches [27,
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Toro-Vizcarrondo and Weeks [10], Rao [6], Rosenberg and Levy [7], and
Hocking [4]. However, they are mainly interested in characteristics and
consequences of misspecified multiple linear regression models. The purpose
of this paper is to discuss a technique to improve the fit of missi)ecified
models for successive sets of data. The technique, in essence, consists in
taking the residuals of a misspecified model fitted to the set of data of time
period 7—1, and incorporating them as an additional independent variable
in the model fitting the set of data of time period .

The idea of the technique was originally suggested by Chung [1], and
supported by Heiser and Dewan [3] through a simulation study. However,
neither of them reported any theoretical discussions about the technique.
This paper attempts to set up theoretical ‘background of the methods,
and, hopefully, serves as theoretical guide lines in empirical research.
The model with the residuals as an additional variable will be called the
“modified model”. We shall mainly concern ourselves with following three
areas of interest |

(a) How are the R? values of the model improved?
(b) What is the resulting error sum of squares of the modified model?
(¢) What inferences can be made about the regression coefficient of

the additional variable of the modified model?
2. Theoretical Considerations

Suppose that we have two sets of data Y.« and Y, over two consecutive
time periods, which were observed on the same variables. For brevity of
expression we will use Yi and Y:in place of Yi1 and Y: from now on. We

assume that the adequate regression model is, for i=1 and 2,

Y, =XB:+u:
=X,B,i+XiButu; . @

where X,=(Xo, X1, Xz, Xs-1) and B, = (Bo:, Bii, Bz, Bx-1,1) . In accordance with
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the Assumptions (2. 1) to (2. 4) we assume that E(uu:') =po?l, X is fixed with
full rank, and E(x)=0 and E(uu:') =¢2J for i=1 and 2.

Let X, be designated as the aforementioned misspecified variable. Since X
is “missing,” the equation-by-equation least squares fit is
¥i=X,B, and ¥.=X,B,

where B,: is the least squares estimate of B,, of model (4) when X is
misspecified. Because of the misspecified variable, it is supposed that the R?

values are low. Let

ri=(el'e2)?/ (e eres €2) (5)
where ex=Y,— ¥, and e:=Y:— 7. Taking e: and incorporating them as an
additional independent variable, the modified model

Y:=X,b,+eibs

is fitted. Note that b, and b, are used to denote the least squares estimates
of B;: and Bi: of model (4) when e replaces X: in the “model for the

second period, i.e., time ¢. The estimates b, and b, are

[Z:]:[(X"’el)l (X"’el)]_l(Xmel)l Y:

il

[X,,'X,,, X;,'el]'l[X,,' YzJ
e’'X,, e'e e'Y:

Il

o ) B

o RG] ®

Letting R,=X,(X,’X,)'X,’ and taking into consideration that er=(I-R,)
Y, and ee=(I—R,)Y:, it is easy to find that

— YlI(I_‘Rp) Yz r2Y2'(I—R,) Yz
S K0 C 0 Al w o = R,) Y, 9

since r2=(ei'ez)?/(er'erez’ez). Thus, the sum of squares due to regression of

the modified model is
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SSR= (b,',bx) [Z,’Y):?'] =Yy Yot (1—12) YR, Y.
Accordingly, the coefficient of determination, R,? for the modified model
is

SSR—nr-t Y/ I+ (Q—rHR,—JT/n]Y,

R2= R +
Y, Y:—nrt Y>(I-J;n) Y

where J=(1,1,---, 1)’(1, 1, -+, 1).

Now it is of interest to determine the functional relationship between R,?
and r2. Let A=I2— (1—r®)R,—J/n, B=I-J/n and r’=re?, a value of r?
obtained from equation (5) for given consecutive sets of data. The relation-

ships

AB=A,
AA=Ir#+ (A —re)R,—J/n, and
BB=B

indicate that R,2? is the ratio of two dependent quadratic forms, which is
not in the form of a F-distribution. Thus, letting q1=Y1'AY: and ¢;= Y. BY,,

R,? may be expressed by a Taylor series expansion in such a way that

R.2=q1/q2=E(q.)/E(qz2) +((¢1) —E(g) 1/ E(g2) —E(q.) [(q2) —E(g2) )/ [ E(g2) )?
—[(q1—E(g))q2—E(g2) J/[E(g2) 2+ E(g1) (q2— E(g2) )/ [E(g2) 134+ (9)

Since B is a positive definite matrix, E(q;) =E(Y?' BY:) is positive. Therefore,
the denominators do not vanish in equation (9). The conditional expectation

of R.% with respect to 7,2 in equation (9) is approximately

E(R.®)=E(q1/q2) =E(q1)/E(g2) —Cov{q1,92)/[E(g2) * -+ E(q1) Var(¢2) / [ E(g2) )%,

where = is used to indicate ‘is approximately equal to.” Let M=E(¥:). From
equation (4), M=XB:=X,Y,:+XiBi. Recalling that Var(¥z) =¢?, AB=A and

BB=RB, we can obtain that

E(q) =E(Yy'AY:) =tr (Ac)2-+ M'AM



24 B ORHBOWT R

=0 r?(n—k—1)+E]+M AM,

E(q:)=E(Y:'BY:) =tr(Bo)*+M BM
=(n—1)0*+M BM,
Cov(gi,q:) =Cov (Y2’ AY:, Y. BY:) =2 tr (ABc*) +-40'M'ABM
=20 (r*(n—k—1) +-k]+40°M' AM,
Var(gz) =Var (Y, BY:) =2 tr (Bo®)*-40°M' BBM
=2(n—-1)o*+40*M'BM.

Therefore, the approximate conditional expectation of R,? can be written

as

ritlac® +bot+co?+d]+e 10)

EQRS = o oy M (T d /) AT

where

a=(n—k—1) (n—1)%,

b=(n—1) (n=3)YM (I-R,)M+2n(n—k—0)M (I-J/n) M

c=[(n—k—=1) M (I-T/n) M+2(n—1)M (I—R,) IM[M (I—J/n) M

d=[M' (I-R)MI[M (I-J/n) M]*

e={[ko* +M(R,—J/m) M [0*(n— 1)+ M (I-J/n) M ?

+20%M (I-J/n)yM—2(n—1)c*M' (R,~J/n) M}.
Note that equation (10) expresses E(R,?) as a linear function of r¢%, with a
constant positive slope for n>>k-+1, which implies that as r,? increases, E(R,2)
increases with a constant rate.
The error sum of squares, SSE, of the modified model can be immediately

obtained from equation (8).

SSE=¥:' ¥;—SSR
=Y Yo [r2Yy Yot (1—2%) YR, Yz
=(1—r) Yy (I—R,) Y-. 11

Notice that if there exists a perfect residual correlation, i.c., =1, then SSE
is equal to zero, which is most desirable in regression analysis. The relation-

ship between SSE and R,? is linear, that is
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2. SSR—n¥2 _ (¥, Y¥2—SSE)—nYs* _, SSE__ (12)
- Yz' Yz—'n?zz Ygl Yz**'nYQZ Yz’ Yz—n YZZ

Rm

Substituting equation (11) into equation (12), we can obtain that

Y:(I-R,)Y; (13)

Raf=1-(-r% Yy Yo—nYs?

From equations (11) and (13), it can be claimed that, when 72 is significant-
ly different from zero for two sets of cross-sections data, this technique is
strongly recommended to reduce SSE, i.e., to increase R? for the modified
model. Figures 1 and 2 below show the chanzes in SSE and R,? as r?

changes.

, SSE
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Figure 1: SSE vs. 1*
Now it is in order to discuss the regression coefficient of the additional

Figure 2: Ravs. 1?

variable of the modified model. Let Mi=X,B,+X:Bw. From equation (4),

we may write

Y1=X,Ba+XiButur=M+u,
Y:=X,B,:+XiBi:+us=M:+us:.

From the assumption E(u.u.") =pg?l,

Cov (er,e2) =E(ei—E(e) Jlez—E{ez) ]
=E{(I-R,) Yi\— (I—R) XiBul[(I—R,) Y2:— (I~ R,) XuBw2]'
=(I—-R,)po*.

since (I-R,)X,=0, In equation (7), -we obtained b;, the estimate of the
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coefficient of the additional variable in the modified model. If we let ¥y (J—
R,)Y:=p; and Yy (I-R,)Yi=0,, E(b:) can be approximated similar to that of
E(R3).

Ew) =E(v1/v)

E(v)  Cov[wi,ve] E(v)Var (v2)
E@w) [E@ T | [E@)T ()

From the theory of distribution of quadratic or bilinear forms (for a refer-

ence see Searle[8]), we can obtain

E(v)=E[YV/(I—-R,)Y;]

=tr[ (I—R,)po*I]1+ M/ (I—R,) M;

=po?(n—k—1) + M’ (I—R,) M;
E(v))=E[ Yy (I—R,) Y]

=tr(I—-Ry)o*+M' (I-R,) M,

=ot(n—k—1)+M/ (I-R)M,
Cov (v1,v2) =Cov[ Yy (I—R,) Y, ¥\ (I—R,) Y1)

—2004 (n— k—1) 2002 M\ (I— R,) My - 20° My’ (I— R,) My,
Var(vz) =Var([ Y (I—R,) Y]
=204 (n—k—1) +40° My (I—R,) M..

Therefore, E(b:) in equation (14) may be expressed as

pa(n—k—1)+ M/ (I—R)M:
E(n—k—1) + My U—R,) M,

E@n=

20° M\ (I—R,,)Mz[M{ (I'—R;,)M2~,0M1/ (I”‘Rp)Ml:l

+ [ i—h—1) T My I—~R ) M.’

An interesting observation is that is a positive constant if n—k—1

dE(by)
dp
=2, and

E(bk)zl, if p:1 and M1:Mg,
>0, if p>0.

Therefore, one can easily conjecture the general relationship between E(b:)
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and p, that is, as p‘increases, E(by) increases with a constant rate and the
range of E(b:) for positive ps’ is possibly the interval (0, d) where d is close
to 1 depending on the values of M and M:. The relationship between &; and

r? is given in equation(7), which is self-explanatory.

3. Summary and Conclusions

The theoretical justification has been pursued for the technique which
improves the fit of successive cross-sections data observed on the same set of
independent variables over a number of time periods. If we briefly summarize
the procedures of the technique, they are as follows.

Suppose, because of some reasons, an important variable is misspecified in
the regression equation of time ¢, which is considered a main source of poor
R?2, To improve the fit, take the residuals of a model fitted to the previous
set of data (i.e., the data of time £ —1), and incorporate them as an addi-
tional independent variable in the model of time z. It has been observed that
the addition of the new variable significantly increases the R? value for the
modified model of time ¢, and the increase of R? value is highly related to

the degree of correlation between the residuals at time #—1 and &.
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