Global Theory o¢f Einstein-Cartan Equations
—Godel Universe with Torsion—

Hokee Minn

Department of Mathematics, College of Natural Sciences,

Seoul National University

{Recieved September 3, 1976)

Abstract

Gidel models of the universe filled with fluid are studied in the framework of the Einstein-Cartan

theory of gravitation. It is assumed that the models admit a group of motions simply transitive on

space-time. The combined effects of spin and rotation {vorticity) are studied with a particular attention

to whether the field equations impose any restriction on alignement of spin direction (a polarized spin

distribution}. The solutions are found explicitly in a closed form, which show that spin combonents

are vanishingly small except in the direction of z-axis (the compass of inertia) in which they can

assume an arbitrary distribution.

I. Introduction

The Einstein-Cartan theory of gravit-
ation accepts as a model of space-time,
a non-Riemannian four dimensional
differential manifold with a metric
tensor and a linear connection compa-
tible with the metric.

The torsion of space-time is related
to the spin of matter in such a way
that the field equations in a vacuum
remain the same as in the classical
general relativity. A present state of
the theory is presented recently in a
review article of Hehl et. al. [17]. Cosmo-
logical models with torsion were first
studied in the hope that the singularities
so ubiquitous in the solutions of Einste-
in’s equations might be averted.

Kopczynski [2] found the first non-
singular cosmological models with spin,
where the metric is Friedmann-like.
Physical properties of the non-singular
universes were examined by Trautman
13] and later by Stewart and Hajicek

[4]. Further Tafel [5] obtained the
complete classification of Bianchi type
homogeneous (spatially) model with
torsion.

These examples show that for a cosmo-
logical model endowed with polarized
(as opposed to random) spin, the distri-
bution of spin strongly determines the
allowable symmetries of the metric
tensor, vice versa. Clearly, then, a study
of the compatibility between metric and
spin that is exacted by the field equa-
tions 1is prerequisite to a systematic
study of cosmological models with
torsion.

However, up to now, all papers on
studies of these conditions are for non-
rotating (non off-diagonal metric) mo-
dels. The importance of rotating effect
can be tens of orders of magnitude
greater than the spin [1]. Therefore
we start our study on the simplest cos-
mological model with rotation i.e. Godel
universe.
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We found that the spin polarization
effect is striking and that only the one
direction is allowed for the alignement
of spin.

II. Field Equations

In this theory, gravitation field is
described by two tensor fields, namely
the metric g:; and the torsion Qij, where
Qi =TI, (I, are coefficients of
linear, metric connection I" with respect
to a hclonomic frame). The Einstein
tensor of the connection I" is propori-
ional to the canonical energy-momentum
tensor of matter .

Rej= F0R = 8zG/ct 1), (2.1

The torsion tensor I7 is determined by
the spin density tensor of matter S

(U = $5G/3 (S 38,8~ 1648,
S,

=N ., 0 2%

Taking into account the metric condition
imposed on /" and equations (2.2) one
may express the connection coefficients
by the Christoffel symbols and the spin
tensor.

F*’_: = ’i’k} —\IEG/'!(IB(-SG,L_—:- S]'k’.*f* Sk‘,'{'—ﬁzs_:
fgj;,S‘:), ‘\’2 3}

If we substitute (2,3) into equation
(2.1, we obtain the single-written
equation

-~

R.,— b+ g ,R=82G/c*t; ;+4nG /", (S5,
+8i#+85%) — UnG/c*®
[ZS,-ijk -+ ZSikmS’"kj + SikmSj‘km
‘:‘g.fj ‘:Sk‘sk ‘S!zlmsm[k - '}" ‘S/H'm
NEEDDIR 2.4

instead of the system of equations (2.1)
and (2. 2). The symbol ~ denotes objects
related to the Riemannian connection
associated with the metric tensor gis.
Since, due to equation (2.4). the
torsicn was eliminated, one may use this

equation to compare the Einstein-Cartan
theory with the classical theory of gra-
vitation. One sees that the metric of
space-time depends not only on the
energy momentum distribution but also
on spin distribution.

Let us now apply equation (2.4) to
estimate the influence of spin in the
case of the Weyssenhoff fluid, its matter
tensors being defined by

thi—=uth,— pd",

S",j:u"S;—j, Z’tksk/:’-': .

In the formula the vector field # is the
velocity vector of the fluid, A is the
vector of its enthalpy density, p is its
pressure, while S, is the tensor of spin
in the matter rest-frame. One can write
the vector of enthalpy density in the
form

h="{p+p u;~ cwdut 7S,

where p=w'w/t;; is energy density in the
matter rest-frame.

In the present case equation (2.4)
takes on the form

R b giiR=8rG/c\ [ (p+ p—4nG/cASDuu;
—(p—2:G/c*S)gi;—c(g"
+utu) VSt 1. (2.5)

where S$?=135;S7. One sees that the
square term in spin appearing in the
above equation contributes to the effec-
tive energy density and pressure

p=per=p—28G/c? 5?
P=pers—p—27G/c* S

The square term in spin behaves as an
effective repulsive force. The repulsion
can become important if the quantity
9:G/ctS? is of the same order as the
energy density. The term cu®u'/sSrit,
is interpreted as ' orthogonal energy



flux, arising from the exchange of spin
angular momentum and orbital angular
momentum. Also noting in equation
(2.4 the left hand side is symmetric
in indices (i,]), its antisymmetric part
in the right hand side expression must
be zero.

We get, therefore, the spin conserva-
tion equation

TSt = Taa (St — w08ty
P
(2.6

111. Godel Universe with Torsion

We assume that there exists a group of
motions simply transitive on spacetime.
Godel "6] showed that the line element

JEm e enrdy i D) 126 )

= (dx) . 3.0

where a is a constant, is compatible
with our assumption and admits a four-
parameter group of isometry.

J, g
i f—1Lg,

where ‘. &, Y. =, are the parameter of
groups.

Ricci tensor is found to be

RI=a%8,07,,

~
(o8]
]
./

and scalar curvature is R=—=Rig;=ad"
The contravariant metric components are

i —1 0 2e %" 0

0 -1 0 0|

g'= g9e7er ~-Qe7E () !
0 ( 0 -1

If we define G =R"- LgR. Einstein
tensor becomes, in unit ¢=1,

Gl={(p+prwu’— pg’ — 2(unut +6*,)
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T pSmtigh (3.3,

We introduce 'the time-like velocity
vector # such that

w'==6 and w;=g. u==g., i =].
Since we know the metric, we can easily
calculate the Riemannian covariant de-
rivative ,S76y?, The left hand side 1s
already known. Therefore the symmetric
part of the field equations becomes, after
some calculation, as follows.

The diagonal parts are

17 -
S Que - pax I
Proa N)

3 e
o=t 272
_;_aeaxS:Z‘_ ]
G22:a2e—2ax:2€—22r1—)7

where, greek indices ;v run only 1,2, 3.
Therefore we get

1 _ [ 7 .
2——F7 ) 1, 26 ¢ Q2
;4 =p—2 | 27 S0 L pax§20 s gpax 2l ] ]
(3.3
p= ka? 3.4

The off-diagonal parts are

. 0 ; . , :
(I()l:a}; Sul+SOl+ea.rS21+% eu'sozi(), (35)

GOZ:’-gi—u Suz+502_aie—m5m+5m>:0: (3.6

G03:5i— SvS_:_SOS_j_SZBeax:O' LSS)

G»=0 for pv=1,2,3 and psv.

The antisymmetric part of field equa-
tion (2.6), i.e. the spin conservation
equation gives us

S12—( (3.8
S23__ ge=exS13—(y (A5 (3.9
(3.10°

‘S'Sl_:_% £°7 523 —)

Further, from the side condition Smau=0.
we get S™u,=0, this implies $"ge=0.
and we get



0800,  SH0-Sieer=() (3.1D
S¥=() (3.12)
$30 S22 (), + S§32gar () (3.13)

Using (3.11)—(3.13), we eliminate 5
components (¢=1,2,3) from the set of
field equations (3.3)—(3.7).

_;2. az_:.é,_?‘ [ 2&16“"52] —

(3.3

-~ —§1=0, (3.5)"
oL

— S, (3.6’
(Ve

_(:_'._ ¥3— 4 ~N7

5 S¥3==0. (3.7)

Using the equation (3.6)’, we get

finally the following form of set of
equations.

o 319
03 - (B)

. 513_;_ R 823770 (3.16)
I g 66: R (3.17>

Notice if we define S=(S%, 53!, §'%), the
set of equations (3.15—17), can be
easily ¢ written in the form pxS8=0,
therefore there exists some scalar func-
tion ¢ such that S are the gradient of ¢.

The set (3.8—10) can be easily solved
in the closed form. However, due to
the fact that the set (B) determines
only the spatial part of spin density
components and the set (A), on the
contrary, determines the time dependent
part for each S, we must solve these
coupled set (A) and (B) simultaneously.
This allows us only the narrow class of
the possibility of solutions which show
a higher degree of spin polarization.

The set (A) permits the following
zolutions

0 0 A
e?f S —— 832
v oozt oz N

SP=f(x)
a
SH=Alx) cos—, ~t+Blx sm——-—:--—zf
2 2
Voo ‘y

§38:2e76* T BIX) cos -

fg’ {— Ax)sin fz 0,
where x stands for x.y,z and, f,A.B are
an arbitrary function of x. However, the
equations (3.14) and (3.17) allow us
that f is the function of z alone, and
A,B are the function of x, and y. From

the equation (3.16), we conclude that

,Na*. A.-Cx,y) = 2 ekal”a%fB{\Ia)’/\

! (:'.,,U__ )
——B‘ Ty =V 2e 5y Alzy)

Let us introduce the new variable

~*~—v‘/‘—lZ- e, then the above equations

2=
are reduced to

[
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These equations are nothing but Cauchy-
Riemann equations for F(&+iy)=B(&,y)
+iA(¢,y), where B(%y), A(%,y) are a
real and imaginary part of F(&+iy)
respectively. It is easily seen that A(%,y),
B(¢,y) are a harmonic function in plane
of &,y such that they separately satisfy
two dimensional Laplace equation. The-
refore the whole class of solution exists
involving three arbitrary function, since
A(&,y) and B(&,y) are harmonic conju-
gate function of each other.

The complete determination for spin
density function is the following set

S=j(z)
b3l “1 "' VO a ~OE aNgy
A5y cos L= BEy)sin———-t
EVAE v 2
0 K -y s~ a e M
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It is more natural to use the variable

g;__i/a—z e in argument of A(x,y).

B(z,y). The simple example of harmonic
conjugate function A.B are the following

_ \/2; vaxx 2 2 . 2 ‘\/';t?re—ax
‘4—_\“& e y -5 B=—- a""':).

Since a_>0, the spatial dependent part
of spin amplitude are rapidly damped
out in the x direction for S* and S°!,
and also the time dependent parts for
large t are highly oscillatory, therefore
it may be averaged out to be zero.
Anyway it shows a high degree of spin
polarization in “the direction of z”.
From the above argument. it is likely
that $%'=S5%—=( and the only non-
vanishing spin component may be taken
as §'% for a good approximation.
Since S7=S,g%g".

S12—08, o-2ax,
§28-98, p2ar,
SN =8;,=35,.
where ¢,=Si  @2==S:s.
S1=S803, So=8. §;=S8..

By the side condition S,z*=0, we have

G1=q2=g3=0
Si=—L e (Blzaicos—Et— Alg,y)sin
1 '\/ 2 (S NENE I g \/J 2 ERANEN )
—=t
V2

) T
Se== A&,y )cos ‘E“—téB<\g,y;5m—‘4az——t,

= ), (3.18)
e /_,a ax ~ ZTZG 2z

p=a; 2————48 T S

1, 2G

p= 5 a’- 2 S
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The equations (3.18) are the complete

set of analytic solution, which describe
the Godel universe with torsion.

Even though the metric is started
with the spatial-temporal homogeneity
of universe, p and p are both the com-
plicated function of spatial variables
z,v,2, due to the term S2=38S,;59.
Notice, however. p and p are time inde-
pendent and even spatially anisotropic
due to the complex interaction of spin
and vortex motion. This is the comple-
tely unexpected result, (contrary to the
classical general relativity expectation),
whose meaning and phyvsical interpreta-
tion is curious and unclear.

Finally, it is well known that in the
Godel universe the world-lines of the
matter are in absolute rotation with
local inertial frame. We can generalize
the above result easily by introducing
the following new vector

‘Qi:Ql - 1{28-

where @,=cy, . uiu*'(the covariant deriva-
tive here is taken with respect to { | is
usual rotation vector associated with the
local rest frame of matter and S,—=%
Tasea®S4  spin  vector and 7, are a
completely antisymmetric  Levi-Civita
tensor density. If we interpret 0, as
usual way 7], @, characterizes a uni-
form rotation about Z-axis, therefore
since in the same approximation, as we
found, S;=9S'? is only nonvanishing, &,
has a large component only in Z-direc-
tion, adding @,-+S,, showing a spin
alignement in Z-direction. However, it
is curious fact that S, is an arbitrary
function of Z, which does not restrict
its functional form, therefore we must
have some boundary conditions on infinity

as to restrict its functional form.
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