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1. ABSTRACT

In this paper, we define a differential module and study its properties. In section 2, as for propos-
itions, we research some properties, directsum, isomorphism of factorization, exact sequence of derived
modules. And then as for theorem, I try to present the following statement, if the sequence of
homomorphisms of differential modules is exact. Then the sequence of homomorphisms of Z(X) is
exact, also the sequence of homomorphisms of Z' (X) is exact.

According to the theorem, as for Lemma, we consider commutative diagram between exact sequence
of Z{X) and exact sequence of Z’'(X). As an immediate consequence of this theorem, we obtain the
following result. If M is an arbitrary module and the sequence of homomorphisms of the modules Z

(X) is exact, then the sequence of their tensor products with the trivial endomorphism is semi-exact.

2. A DIFFERENTIAL MODULE

DEFINITION 1. A differential module over R, we mean a module X over R together with a given
endomorphism & : X—X of the module X satisfying the condition d.d=0
PROPOSITION 2. The quotient module H(X)=Ker(d)/Im(d) is called the derived module of the
differential module X, For any given lower sequence C of modules over R, Consider the direct Sum
X=3C,

neZ
and the restriction & : X—X of the cartesian product of all the boundary operators @ ; Ch— Cn_; verify
d.d=0 and establish
H(X) =%;H,. ).

Proof. We take dad) (Z‘;C,.) =d (d(ZZC,.))zd(Zza ©Ca))

ne ne ne.

=38(3(Cs)) =0
neZ

because d is the boundary operation consequently d:X—X We get d.d=0 This implies X is a
differintial module according to the definition
H(X)=Ker(d)/Im(d),
We have endomorphism d.d=0 with ﬂgc,.——»”éjza(cn)

since Kerd= ZZKer () and Im d= Z}m ©))
We have H(X)=Kerd/Imd=3 Kerd/Imo= Z;{era/ Imo= Z};—In (9]

PROPOSITION 3, Consider an arbitrary differential module X over R with differentiation
d.X—X



Let Z(X) =Ker(d) Z' (X) =Coker (d)
B(X)=Im(d) B’ (X) =Coim(d)
(1) The differentiation d ; X—>X induces an isomorphism
d: B (X)=B(X)
and admits the following factorization:

X—Z'(X)—B (X) -5—>B(X) —Z(X)—X.
(2) This factorization of d yields a homomorphism
d . Z'(X)—Z(X)
(3) Establish the equalities
Coker (') = (X) =Ker (")
@) 0—>H(X)—>Z' (X) —> Z(X) —> H(X) —0
is exact sequence,
Proof. (1) Since d : X—>X  We have ImdCKerd Thus is B(X)cZ(X)
We obtain B’ (X) =Coim(d) =X/Kerd
By the 1st isomorphism theorm it is clear that there exists
an isomorphism 8 : B'(X) =X/Kerd—>Imd=B(X)
(2) Let Z’(X)=X/Imd and B (X)=X/Kerd denote any two quotient module

Thus X2’ (X)—os B (X) —(LB(X) Zizm-Lx
factorize where v is the canonical map and 7, j are inclusion mros and 27z 2 oz wendine X+ Imdd
to X+Kerd Thus we get a map 4'=4.8.p : Z' (X) —Z (X} This map is homomor chist,
(3) Cokerd’=Z(X)/Imd’' =Z(X) /Im(i-6-p) =Z(X) /Im(jei-D:p+)
because v, j are epimorphism and monomdrphism respectively,
The latter term Z(X) /Im(j+i-0.p-v) =Z(X) /Imd=H (X
Similarly H(X) =Xer(d"
a d B
@ 0—HX)—Z' (X) —Z(X)— H(X) —0
a : H(X) =Coker(d) =Z(X) /Ind X/Ind=Coker(d’) =2Z'(X) is an imbedding.
B:Kerd=Z(X) Z(X)/Imd=H(X) is canonical map
To show the above sequence is exact for zay element x+Imdes Z(X)/lnd.
We have (&', &) («+'md) =4’ (z+Imd)=0
Thus ImrCKerd’ ‘
Conversely Let 2+ ImdeZ (X)
then there is an element ea=H(X) with a(@)=z+Imd &' (z+Imd)=0
by{2) we get Ima=XKerd'.
Similary for any element z+ImdeZ’ (X).
We have (8.4') (z+Imd) =8(Z(2))=0
because 8 Ker(d) =Z(X) —> Z(X) /Ind=H(X) is canonical map, " .
Conversely proof well do to.
Consequensely Imd’' =Ker 8, we proved the exact sequence.

a g
THEOREM 4. If the sequence O0—4—~—>B—C _
of homomorphisms of differential modules (which commute with the differentiations d) over &



is exact.
Let Z(A)=Kerd. @ Z(B)=Kerd’  Ker(C)=Kerd"”,
—> B —->C

l 4 l a’ l

R

A——B——>C

o ]

B
then O—Z(A)—>Z(B)—>Z(C)  is exact.
"Proof. For any element a&Z(A4) we have d(a) =0.

Since (8*-a*) (a) =p*(a*(a)) =f*(a(a)) =B(a(a)) =(B-a) (@) =0 is the trivial homomorphism, we

have Ima*CKer B*.
On the other hand, for arbitrary element b&Z(B) and b= Ker §* we have 8*(8) =8(b)=0.
Since f(4) =0, this implies b&Ker f=Ima.
‘There ‘exists an element a&A with a(a) =b. By the commutativity of the left square, we have
a(d(@)=(a-d) (a)=(d"-a) (a)=d’ (a(a))=d"(8)=0.
Since @ is a monomorphism, this implies d(a) =0.

Hence we obtain a&Z(4), we get Ker f*Clma¥*,

We have Ima*=Ker 8*, This completes the proof.
a B

THEOREM 5. If the sequence A—>»B—C—~——0

of homomorphisms of differential modules (which commute with the differentiations d) over R is

exact.
Let Z'(A)=A/Imd Z'(B)=B/Imd  2'(C)=C/Imd",

P v
Then  Z'(A)—>Z'(B)—>»Z' (C) —>0 is exact.

Proof, Let us consider arbitrarily homomorphism ¢ and v of quotient module over

Coker (d) —i)Coker (d') and Coker(d") -i->Coker @n.
Then we must make sure that g,v is well defined.

I a+Imd=a;+Imd then a1—a&Imd
there exists element a&A with d(a) =a1—as.
By the commutativity of left square, we have d'a(a) =a d(a)
Then we have
Im &’'>d’ (a(a)) =a(a1—az2) =a(a;) —alaz)
This implies a(a1) +Imd’ =a(az) +Imd'.

Hence we obtain g(a1+Imd) =g(a:+Imd) consequently well defined . Similary we can define v

homomorphism.
Thus we have established g-homomorphism such that
# : Coker(d) —>Coker(d')
satisfying a+Imd—a(a) +Imd’.
Here we must be established
#((a1+Imd) + (a2+Imd) ) =u((a1+a2) +Imd]}
=a(a1+az) +1Imd =a(a;) +a(a:) +Imd’ = (@ (a1) +Ind') + (@ (a2) +Imd’)
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=p(a1+Imd) + (a2 +Imd).
Also p(r(a+Imd)) =p(ra+Imd) =a(ra) +Imd’ =r(a(a) + Imd’') =ru(a+Imd).
Hence we get that # is module-homomorphism.
Similarly we can define that v is module homomorphism consequently we well define module
homomorphisms.

Coker (d) —ﬂ—»Coker @) —v—>Coker @"n.
The last assertion in theorem is to show exact sequence.
Let  a+Imde=Cokerd, be arbitrarily given.
We have  veg (a+Imd) =v(e(a+Imd)) =v(a(a) +Imd’) =Ba(a) +Imd”’ =0+Imd" =0,
We get ImuCKer v.
Conversely, let b+Imd &Ker v then we can easily verify that
v(h+Imd')=0 B)+Imd’=0. We have f(b)SImd".
Hence there is an element  ¢=C with () =d" (¢).
Since 8 is a epimorphism, there exists an element  ¢&C and b&B with §(b) =c.
By the commutativity of the right square
we have  B(6—d' (8))=B(b) —Bd' (6) =B(b) —d""B(6) =B(8) —d" (c) =B(6) —B (&) =0.
This implies b—d' (b) =Kerf=Ima.
Hence there exists an element  ac&A with a(a) =b—~d' (b).
In this case a(a) —b<Imd’.
We have a(a) +Imd’ =&+Imd’.  This implies #(a+Imd) =b+Imd’, since b+Imd' &Im .
We get Ker vClm .
This completes the proof Im g=Ker v. We obtain exact.
LEMMA 6, We obtain a commutative diagram
7/ (&) ——Z (B)——2Z' (0) 0
& | |

0—>Z(A) ———Z(B) ——>Z(C)
of homomorphisms of modules with exact rows.
Proof. Let us define arbitrarily homomorphisms d and &' with d’ (¢+1Imd) =d(a)

4
oevr A/ Imd—‘-i——>Kerd
¥ ap+Imd=a1+Imd then ay—a:&ImdCKerd.
Since d?=0, we have d(a—a))=0 d(a)—d(@)=0 d(a))=d(ar)
Hence, we can define d'.

Here we must be established module-homomorphism &’
d' ((ao+Imd) + (a1+Imd)) =d’ (a0+ a1+ Imd) =d (ao) +d(a1)
=d' (ap+Imd) +d’ (a1+Imd)
also, &' (r(ao+1Imd)) =d’ (rap-+Imd) =d(rap) =rd’ (ag+Imd).
Hence we get that 4’ is module-homomorphism.
To show the diagram
74—t 7 (B)
a - d is commutative.
Z(A) ——Z(B)



L

For any element a+Imd=Z’ (4)

there exists (', @y) (¢+Imd) =4’ («(a) +Imd) =d’ (¢ (a) +Imd) =d(«(a)).
On the other hand  a.d’ (a+Imd) =a{(d(a)) =d(a(a)).

Similarly we can prove that

z (B)E*—--—>z' ©)
d 3 ld’ Is commutative.
Z(B) ———Z(C)
Consequently we get commutative diagram.
THEOREM 7. An exact sequence

0—zty Loz 5az(0)—0

Then, O—>Z(A4) ®M-{:>Z(B) ®Mﬁ->Z(C) RKM—0
is semi-exact if M is an arbitrary moule over R and j is trivial endomorphism.
Proof. We prove, for any two consecutive homomorphisms f,, and g4, gafx is trivial homomorphism.
We define fy and g, as follows
fH=fQ4, gx=e®i

We claim g4 fs is trivial homomorphism.

n

For arbitrary (t=Z(A)QM, let t:;Z, (axRmy) for ;=Z(A) and my&M for each k=1,2, +++++- 7

=1
Then we have by tensor product

Ex Fo () =24 (fQj) (;z:l (@x@mi))

=g (5 (@) @i ()

And we apply the same method and tensor product

g0 FxO =51 @@ (.7 (m)
=ez4Ren.
It means the unit element of Z(4A)QM
This completes the proof.
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