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0. Introduction

To gain knowledge about the unknown state ® of nature, we perform
experiments. Sufficiency of an experiment for another experiment has been
introduced for the comparison of experiments [1]. The knowledge before
and after an experiment makes it possible to discuss the amount of
information provided by the experiment [3], [4].

The amount of information is defined as the expected difference bet-
ween the entropy of the prior distribution over ® and the entropy of the
posterior distribtion [4]. The amount of information has some guiding
post to the information value which is defined as the expected difference
between the Bayes risk of the prior distribution over ® and the Bayes
risk of the posterior distribution [6]. The loss functions are at hand in
the information value. The information cost or the experimental cost
should be taken into consideration for decision problems [5], but it will
be excluded in this paper.

The object of this paper is as follows:

In section 1, we shall analyze the binomial dichotomy experiments and
show that the view of Lindley [4] is more powerful than that of Black-

well (1] for the comparision of experiments.

In section 2, we shall find a relation between the amount of information
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and the Bayes risk for the special but very frequent decision problem in
which the prior distribution is continuous and normal.
In section 3, we shall show that the information value can be evaluated

by means of the amount of information.

1. Comparision of the Binomial Dichotomy Experiments

Let (6,8) be a measurable state space, where f is a o-field of the sub-
sets of ©. Let & be a probability measure of (6,8) and absolutely conti-
nuous with respect to a measure m on (0,8). We denote d&=&(0)dm.

Then the amount of information against & is defined by

To={¢(6)logt () dm,

where the logarithm has base 2.

Let X be a random variable on a measurable space (X,x) whose pro-
bability density function f(x]6) given =0 with respect to a measure 7
on (X,y) is assumed to be known, where 3 is a o-field of the subsets of
X. We also assume that a probability measure Po, 60, on (X,x) which
specifies the random variable X has the distribution function f(x|#) with
respect to the measure » on (X,x) and let P={P,}. Then the ordered
triple (X,0,P) characterizes an experiment &.

After an experiment has been performed, we have an observed value .
x of X. Then the posterior distribution is given by

ﬂmea@:i%%§QL,

where f ()= f F(x|0)&O)dm.
The amount of information against the posterior distribution £(x) is de-
fined by

I(x) =[§(x)logé (x)dm.
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Definition 1.1 The amount of information provided by an experiment

&, with a prior distribution £(f), when the observed value of X is %, is
I1(8,6(0),%)=ECI1(X)]—1o.

Consider two binomial dichotomy experiments, & =(X,6,P,) and &=
(X,0,P;), where X={0,1}, ©={0,,02} and Y=/{0,1}. P is defined for

fx(x=1{0)=p:i=1—f.(x=0]0:) (i=1,2),
when 0= p1=<p>=<1. P, is defined for
F(x=110)=q:=1—f,(x=0]6:) (:1=1,2),

where 0=Zq:1=<g.=1.

Theorem 1.2 &, is sufficient for &1 if and only if,

1—q2 1—ps D2 q2
(1.1) l—q: = 1-p = D = qi

Proof We must show that there is a nonnegative function 2(x,y), where %
=0,1 and y=0,1, such that the follwing equations are satisfied both for
x=0 and for x=1:

S (2]00) =h(x,0)£,(0101) +h(x,1) f5(1]61)
and  fx(x|02) =h(x,0)f,(0]62) +2(x,1)f(1{62).
Putting d=¢2(1—q1) ~q1(1—¢q2), we have

(1.2) 20,0 ={g(1—p1) —q:(1—p2)} /4,

(1.3) 20, D={1-g)(A—p2) —(1—p1)(1—g2)} /4,

(1.4) A(1,0)=(p1gz2—q1p2)/4 and

(1.5) AL, D ={p2(1—q1) —p1(1—g2)} /4.
Since g2=q1, we have 4=g>(1—q1) —q1(1—¢2)>0 and hence all the numer-
ators in (1.2), (1.3), (1.4) and (1.5) must be nonnegative. Then we

have following inequalities:

a/1=(1=02) /(A= p1),(1—g2) /(1 —q) = (1~ p2) /(1= p1),
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(1.6) qz/q1=p2/pr and (1—gq2)/(1=q1) = p2/ b1

From (1.6) and the assumption, we have (1.1). Since %#(0,0)+4(1,0)=1
and 2(0,1)+4(1,1)=1, the proof is completed.
Remark 1.3 Since & is sufficient for &1,&: is not less informative than &1

in view of Backwell [1] and Lindley [4].
Now we consider that @ is uniformly distributed, Z.e.,
(0 =£0) =7

Let I(p1,p2) be the amount of information after performing &1. Then

I(p1,52) =S (o brrt+ 89) =5 S(£0) =S (£2),

where S(x) =—xlogx—(1—x)log(1—x) (0=<x<1) and the logarithm has
base 2.

ince OL(bs02) — oI (ps, 1)
Since b, =0 and pe <0,

I(p1,p2) is increasing for p1 and decreasing for pz. These enable us to
compare & and & when pi=qi;, (i=1,2).

Lemma 1.4 There exists a unique p(ogpg%) satisfying I(p1,p2)=
I(p,1—p), where p1 and p» are fixed. And I(p,1—p)<I(q,1—q) for p<gq.
Proof Since S(p)=S(1—p), it suffices to show that there exists a unique

p(ogpg%) satisfying

(L) S(8)=1=[S(§ b1t b) =4 S(B) = 15(p2) | =1-T(p1.2).
Since S(x) is concave for x, we have I(p1,p2)<0. Since 0<S(x)<1 for
x(0=x<1) and 0< $:;<1, (¢/=1,2), we have I(p1,p2)=<1. Hence we have

(1.8) 0=<1—TI(p1,p2)=L.

Since S(p) is continuous and one-to-one function and 0<<S(p)=1 in the
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interval [0,1], we have the first part of this lemma from (1.7) and (1.

8). The second part immediately follows from (1.7) and concavity of

S(p).
Theorem 1.5 Let £(0<k<(1l) be a constant. If po—p1=q2—q1=Fk and 0<q,

<p1<—l%f—, then we have

I( p1,p2) <1 (q1,q2).
Proof Consider
(1.9) I(pl,pz)=S(p1+%k)——;— S(h —%S(kerl)El(pl).

From the assumption p<(1—£k)/2, we can show
(1.10)  (2—2p1—k)22p1(2k+2p1) <<(2p1+kR)2(2 —2p1) (2—2k—2p1).
Differentiating (1.10) with respect to p1, we have

1 2
1— p1r——k ) p1(k+p1)
(1.11) Td_l(‘bl):%_log < 1 .\2 2 )
b1 (52 ) Q=20 A=E—p1)?

From (1.10) and (L 11), we have»%L<0 and hence I(p1) is de-

1-%
2

creasing for p1. Therefore, if g1<p1<C , we have J(p1)<I(q1), ‘.e.,

I(p1,p2) <1 (q1,92).

Remark 1.6 If & is not less informative than & in view of Blackwell,
then so is it in view of Lindley. But Theorem 1.5 shows that the con-

verse is not true.

2. Applications of the Amount of Information in Decision Theery

Consider experiments &:=(X,0,P), (/=1,2,---- ,n), XX and 0C86,
where P is defined for f(x|0) given by

2.1 f(xw):( - ) expl—r(x—0)2/27.
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We denote by x; an observation after performing &; We also assume
that the experiments &, (=1, 2, .-+, #) are performed independently against

the specified continuous prior distribution given by
@2) £O)=(—5)F expl—c(6—u)¥/2]

We define experiments &®(i=1,2,.-.,2) as follows:
gv=¢g, ED=(&,ED), ++, W= (&, En D),
where (&, &?) is the sum of two experiments, &: and &% [4].

On the basis of &, a statistician decides ;whether the mean of a nor-
mal distribution which has spscified precision 7 is smaller or larger than
the value 6o, where the prior distribution is (2.1). We assume that the
loss functions L:(6) resulting from the possible decision d;, ({=1,2) are

of the following forms:

_ {0 for <6
Li(0)= [0—00 for 0>03,

__[6,—0 for =0
L.(6)= {00 for 0>(93,

Then Bayes risk p.*(&) after performing & is given

bt O = UV T G ) )= 9L o (B

where ¢(s) :ﬁo(x~s) vgl?e'xz/zdx and rnzL’;@)—[Zj.

: d ___ zfexpln(fo—p)?]
Since _dn pn* (5)"‘ - -27«/77:-7.,:113’2%2 <0!

p-*(&) is a monotonically decreasing function of #.

Lemma 2.1 Let /. be the amount of information of &®. Then we have

I,,:% 1og<1—|—n%>.
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Proof Against the prior distribution (2.2), the amount of information Jo

is as follows:
o« 1/2 ; N
L=~ ()" expl—r(9— w2 log[( 5m—) expl=r (6= p?/2} |d0

1
2

_r 1
log o —2-/10gg2.
Using Bayes theorem, the posterior distribution &£(x) can be found as

,z.l

e =(-5=) “expl—r'@—1)7/2],

- ,_cptmrx o L&
where ¢/ =n+nr, p'= T ar and x=— Elx. [2].

Hence, we have

BL0d=[ [ (o) rexpl—e' @—u)?/2)

’ 1/2 !
log [( ;n' ) exp{—r'(ﬁ-—#')z/mJ dﬁdxzélog %—%logl

Therefore, we have In=Io—E[I1(X) ]=10g< 1+n~§~).

Theorem 2.2 If we exclude the infomation cost and if we have, for some
n, p.*(&)=¢ and I.=I, then for any integer N=#, we have pv*(§)=e¢
and Iy=1.

Proof The derivative of I, in Lemma 2.1 with respect to z# is positive

and hence I. is monotonically increasing for »#. Since p.*(§) is monoto-

nically decreasing for #, this theorem immediately follows.

Remark 2.3 The criterion for the Bayes risk is equivalent to the criterion

for the amount of information in this special case.
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3. Relation between the Amount of Information and the

Information Value

Let (6,8) be a measurable parameter space, where O= (0,0;,-++, 6.} is
the finite space of state of nature and where 8 is a o-field of the subsets
of O. Let £= (&1, &2,-++, £.) be the prior probability distribution over 6. Let
(A,a) be a measurable action space, where A= {a1, az,*:-, .} and where a
is a o-field of the subset of A. Then we can, without loss of generality,
define the loss function w as shown in diagram 1, where w;;=0 and w;;=
0, (/=1,2,--,2 and j=1,2,-.-, n).

al az v an

ﬁ1 Wi Wiz *** Win

02 | wa  wn - Wi,
071 | Wn1 Wn2 **° Wan
Diagram 1.

For these 6,6, A and w, we define the basic decision problem D= {6,¢,
A,w}. Now we assume that the distribution law f(x|0=6)=f:(x) is known
for the given 0=0,=0, where x is observed value of a random variable
X. Then the posterior probabilty distribution is given by &(x)=(&:1(%),
£2(x),00+, &n(x)).

The information value V(X |&,w) for the observed value x of the ran-
dom variable X is defined as follows [5], [6]:

V(X|&w)=R(Ds)~R(D),
where R(Do)=Ro(§|w)=inf [w(6,a)d&(6)

asA

and R(D)=R(X|&,w)=E[Ro(&(X)).
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We denote, for simplicity of notation, as follows:
R=R(Dy). V=V (X|&w),

WEmax(iw,-,-, j=1,2, -, 1),
i=1
w(O)EnliAn((_g,l&wﬁ)/W, 7=1,2, 0, %)

and w(x)EmEiAn((:Zl&(x)wij) JW,j=1,2, s, 7).

Then we can evaluate the information value V(X |&w) by means of the

amount of information I(X]&) as follows:

Theorem 3.1 If there exists at least one #-tuple solution (1,32, ¥n)
such that 0<y;<1, (i=1,2,, n) satisfying

3.1 g&yizw(O) and iizlsi(x)yf:w(x),

then we have

RV 7= Rt V)log VRtV

(3.2) WIX|&)=(Ro—V)log 75

Proof Since
(3.3) Ry=R(Do)=Ww(0) and R(D)=Ww(x)f(x)dx,

where f(x) ;:Zl&fi(x), we have

(3.4) V=V (X|&w) =W {w(0)—w(x)f(x)dx).
From the assumption (3.1), there exist a:(x) =y: such that 0<a:(x)<l,
(i=1,2,--, n) satisfying

(3.5) égiai(x)swm) and gsi(x)ai(x)zw(x), xeX.
Since ff(x)dle, we have from (3.4) and (3.5)

(3.6) V/W =1_'§ &ifai(x) F(x)dx _,:21 2:(x)ai(x)dx
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=3 (g (1—ri(x) 1,

where §i(x)/éi=ri(x) and &ai(x)f(x)=g:(x).

From the definition of the amount of information, we have

I=5[ ()& @) logei(x)da—F gilogés
Since E(&(X)]= fa(x) f(x)dx=¢&;, (i=1,2,+--,2), we have

I=%[F@D)logt () dx—E[f() () logs: dx

= 21f$iai(x)f(x) §i(x)logi(x)dx —l—éj&[l —ai(x)]f () ri(x)logri(x)dx

=3 [g:@r(Dogri(da+ 5 () ri(x) logri(x)da,
where ki(x)=&ll—a:(0) 1 f () =6 f (%) —gi(x).
Let G(x)= glgi(x)ri(x)logri(x) and K (x)= éi’eg(x)ri(x)logri(x).
Then we have
3.7 I=[G(x)dx+ [K (x)dx, where J\=G(x)dx.
From (3.2) and the definitions of g:(x) and ki(x), we have

(3.8) ifgi(x)dx:w(O):Ro/W and
(3.9) gfki(x)dle—w(O)—Ro/W.

Using the extended Jensen’s inequality [7] for the convex function xlogx

(x>0), we have
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fG(x)dx élfgi(x)ri(x)dx l ilj-gi(x)ri(x)dx
= LT

= log: ,
Sawa  Efewd | Lfawad
(3. 10)
[K ()dx élfkf<x>“<x>dx , ;kax)n(x)dx‘
= log! )
Sf(ds Zfkds L nfkds

Hence, from (3.7) to (3.10), we have

R2CE[ g dalogl (3 [zi(x)ri(x)dx jw ()],

Je2CE frur @ dailogt (3 (b0 ri(0)d) | (1= w(©)})
From (3.6) and (3.8), we have
@11 Efe@r@de=Ro/W -V /W
and from the definition of k:(x) and (3.11), we have

(3.12) B [@rdr=5[erf @ ds—3 [e:(Drix)dx

?Z:l&— (Ro/W —V /W)

I

=1—Ro/W+V /W.
From (3.10), (3.11) and (3.12), we have
I=J1+J2=(Ro/W—V /W)log[W /Ro(Re/W—V /W)]
1

+(A—=Ro/W+V /W)log——p 757 (1= R/W+V/W)], i.e.,
1—Ro/W
WIX18)2 Ro-V)log KoV - (W= RotV) log Ty R0t

107

Remark 3.2 Miyasawa [6) has shown the inequality (3.2) without the
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assumption (3.1), when #=2.
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