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Streamline Tracing of Marine Propeller Blade

——A Formulation of an Indirect Problem——

Hun Chol Kim*

Abstract

An analytical formulation of obtaining propeller sections for a given vortex system of radial

and chordwise distribution is given as an indirect problem of tracing the propeller surface.

The formulation satisfies the boundary condition of potential flow exactly rather than previous

approximate use of induced streamline curvatures at the zero camber line.

General Remarks

The crux of an analytical method of propeller design
is to obtain a circulation distribution for a given
geometrv such as section shapes, camber, etc., assu-
ming Kutta’s condition at the trailing edge [1]. Once
the circulation distribution is found, induced velocities
and section lifts can be readily obtained by Biot-
Savart’s and Kutta-Joukowsky’s laws, thus leading
to required pitch and thrust and torque distribution.

To account for the width of blade, in lifting sur-
face theory, a chordwise as well as radial distribu-
tion of circulation has to be considered. Viscous cor-
rection follows as usual.

Historically, the earlier approach, e.g. in Ludwig
and Ginzel (2], was to give a circular arc profile
with a circular arc camber on the geometrical side
and to assume an elliptical chordwise distribution on
the circulation side. Then from the curvature at the
3-chord point computed from the induced velocity at
that point and from the given geometrical camber, a
“camber correction factor” is derived to adjust even-
tually the geometrical pitch.

Later the same approach was followed for other
profiles such as aerofoil sections. Also an improvement
was made using Weissinger’s lifting surface theory

in determining circulation at i-chord instead of the
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given elliptical distribution, with the boundary con-
dition satisfying at 3-chord [3).

In Pien’s work [4], the radial distribution of cir-
culation is determined from the given propeller per-
formance, and then the radial distribution is decom-
posed into an assumed chordwise distribution to bring
about a lifting surface effect. From the chordwise
distribution, the chordwise downwash distribution is
computed from which meanline of the blade section
camberline is obtained by integrating the induced
streamline curvature on the helical surface or at the
zero camberline (as we are considering at a particular
section only). On this meanline then is superposed a
blade section of some thickness distribution.

Later works by Kerwin and others [5] improved
this theory by distribution of sources and sinks to
simulate the displacement of streamlines due to finite
thickness of a blade section.

The approach taken here will be similar to Ref.
(4] in that the chordwise distribution of downawsh
must be computed first, but the meanline of the
blade section, or the blade shape if thickness is to
be considered, is to be treated by streamline tracing
technique, which is now well practiced in wave re-
sistance theory.

This indirect formulation satisfied the boundary

condition of potential flow exactly, or it can be made:
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so with the original distribution surface of circula-
tion adjusted, whereas use of induced stramline cur-
vatures at the zero camber line is an approximation
[6], which will be more apparent for high lift, high
cambered, and wide blades. Also this should be
significant with today’s multibladed propellers where
cascade effects are more apparent.

In the present exposition, only the formulation of

ithe problem will be given.

Assumptions

1. Fluid is frictionless, incompressible, free of cavita-
tion and infinite in extent.

2. The propeller is considered to be operating in an
axially directed stream whose magnitude is a fun-
ction of radius only, and the flow is steady,
irrotational relative to a coordinate system rotating
with the propeller.

3. The propeller has K symmetrically spaced identi-
cal blades. These, however, may easily be modified
for non-symmetrical cases.

4. The propeller blade thickness is thin or in fact
of zero thickness so that the disturbances to the
flow caused by the propeller is small. This, how-
ever, may easily be modified.

5. Bound circulation of both radial and chordwise
distribution is given on the surface of a blade
outline on the reference helical surface on the
zero camber line initially. This may be improved
after the actual camber line is obtained and by
recycling the formulation.

&. Rather than assuming Kutta's condition at the
trailing edge, the condition is imposed that the
normal component of velocity to the blade section
is to be zero.

7. Trailing vortex sheet forms helical surface (of

not necessarily a constant pitch) with respect to

vortex (line) shed by
given circulation at - r*

Cuordinate System

Fig. 1.

Journal of SNAK

the shedding point.

8. An orthogonal curviliner system on helical surface
is assumed. This is true of a constant pitch pro-
peller only,

Coordinate System

Q : A general point at radius » and where the expres-
sion for induced velocity is sought.

P : A point on the vortex, 1) bound on the blade,
2) free on the blade and 3) free on sheet
trailing behin('i‘the blade, all on radius »’

R : distance vector between two points above;
R=|R|

ds : vortex line element on 7'

(z,9,2) : Cartesian coordinate system fixed on the
propeller and rotating at the same angular
velocity (constant). Origin of the 6(z,y,2)
is contained in the plane perpendicular to

x-axis and passing through the control
point.
z : axis of revolution, positive down stream

y : selected to pass through a control point
in the first blade

z : complete the right hand system
(z,r,6) : Cylindrical coordinate system expressing
(z,y,2), and z coinciding. 6 is measured
clockwise starting from y-axis looking aft.
r=yyifzt
6=tan"(z/y) ¢y
0y : 0 coordnate shift designating the corresponding
points on each of the K blades (all blades are
assumed to be the same here).

{y~——rcosﬁ

Z=rsinf

If blades are symmetrically arranged,

5‘=ﬂ%i; k=1,2,:, K 2

When the effect of all blade is considered, % is
to be accounted for.
(&,7,7) + An orthogonal curvilinear coordinate system
for each blade at a particular radius r. The
& coordinate is formed by the intersection
of an axial cylinder of radius r and the
line element on the helical surface
Hy(z, 7, 8)=x—2(r) (8-+8) =0 3)
where
A(r)=r-tang¢(r) }

4
$() =4 P ") @
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&(r) being the geometric pitch angle and
P(r) the pitch.

The origin of (& #, r) is taken to pass
through a point of intersection of y and ré.
When rake and skew back is zero, as as-
sumed here, & is a helical line parallel to
and/or passing through the nose tail line
or the reference helical line for the blade
section at the radius r,% coordinate is a
helical line similar to & but perpendicular
to it at the intersection of y and r#. Note
that on this coordinate system the blade
element is treated as an airfoil section in
a uniform flow.

[See Figs, 1,2]

Fig. 2-a.

Curvilinear axes (&, »,r) on r=constant.

K

ii
~0
=
—

16+ e
et d
/y’ i\
|
!
\
X
(r=r)

Fig. 2-5, Expanded View of (&, 7, 7)

on r==constant.

With the above coodinate systems, J may be ex-
pressed either Q(x, ¥, 2), Q(z,7,8), or Qm,r) and
r=const. Considering the orgin referring to Fig. 3-a
and 3-b,
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where :
rf=—¢&cosp-+xysing
et ] )
= —&sing-+ncosg
E=—rbcosd—Tsing
p=—2Cosp-+rosing
Q)f’x=i(r)(b’+5u)—(vcosgﬁ—fsinf?)
o TR \
1‘5—7 cos [+t (7sing—Ecosd)] %)
Cx=rsin [5+5.+%— (ysing —£cos )]
with r=const, ¢= ¢(r),
k=1,2 - , K
Similarily P may be expressed as:
On the propeller blades:
P($'=l(r')(9'+5k') — (" cos¢ —£'sin¢) \
|
y’zr'cos[ﬁ’+6k’+—r1',(m’sin¢—S'cosg'))] (8)

[
. . S |
:’:r’sm{H'—%o[—#%;(m’smga—;’cosgﬁ)] !
with 7,=7,(8) is the surface of vortex dist-

ribution as shown on Fig. 3-a
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On the trailing vortex sheets :
Pz’ =) (6 +8,)+& sing

¥ =r'cos(6'-+8, — —rL,E’cos $)

!
PRIV BVSIIN ®
z'=r"sin (0"+3," — ;54" cos §) \
\and &' =Z6(r')r J
where :
ﬁ(r)rz_’l_— C(Zr) cos¢ or trailing edge

¢(r) : chord

Vortex Distribution

Assume a distribution of vortex both radially and
chordwise as shown in Fig. 4-a and b on the cur-
vilinear coordinate system (r, &,7), where »,(¢) the
camber arc defined between the leading edge &(r).
and the trailing edge £(r)r, and 7,(&) is to be found

for an indirect problem.
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Fig. 4-b
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With the above definition,

rey={""" ror e (10
“rr
where '(r) : radial distribution
I'.(r, &) : chordwise disiribution
It is assumed that I',(r, &) is given.

Occasionally the same will begiven in the from of

(10-1)

8
e

F(r’):S ()" r.(r, 6) ras
T

Boundary Condition

Let us assume an inflow
V (V=
V. being

into the section

Vv V¢2+47E2n27‘2;

speed of advance and 7,
rps) at an angle of atlack
@, then at Q
Vr : Tangential component of V
= Veos[at+5(€)]
=v Vit4nnirecos(a+3(5)] (11>
Vy : Normal component of \4
= Vsin[(a+8(&)]
= Vi izt sin(a+5(&)]  (12)
=y Vifanwrilet8@]  (13)
Then the exact boundary condition at Q is that
the sum of all the velocity components normal to Q
must disappear and the flow must be completely along
the tangential line. Therefore what is to be done is
to obtain all the induced velocities at Q due to the
sum of the following sources :
(1) bound vortex distribution on the blade
(2) free vortex distribution on the blade
(3) trailing vortex distribution aft of trailing edge
(4) If exisits and not neglected, hub vortex
(5) inflow into the sectiom, v,
and then the flow velocity is to be decomposed into.
normal and tangential components, and finally nor-
mal component of the sum is equated to zero.
And the resulting integro-differential equation is

to be salved for 7,(%).

Induced Velocities Due to Vortex Distribution

To obtain induced velocity Biot-Savart’s law is to

be applied. Sinc the the detail is given in [4], it’s:
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derivation wiil be limited to essence here.

(1) Due to the Free Vortex Trailing Aft of Blade

dipg vl {7 ALGD e AR,
4= Jecry IR

(14)
where :

arn
@) :S BT, 9y de
67 ’T

For N-blades

N
1

1 /J di'(r")

di -
w/.1 dr =0 dr

>  d5, AR,
dr/jd SIAR, Jo
r’y

. *‘j Rlla
(15)
with proper 4, considered.

In the above

ST
Ry (47 =) (y =) (27 )
where (%', =) is from (9) and

(z, 5, %) is from (7).

R A
BT T T
|dsy|P= ()4 (') 4 (d?

| P (ZA(7
da’ = 15 sing [(6 +6s") - v —fd/ —

Xsingdr’-+2(r"yd 0’ — 2+ sin s—*d0 ]
. Y LLa x
dv' == COS[é ~d, 8’ cos $sin o]<¥~,~; sin o’>
; pu ‘
. P & L
sdr =1 sin [6 46 +6"cos o+~ st]
r
x ,
<I—C(‘su*7 = sin o)(/.f
dz" = sin [6 -6y 0 c05p+ smo]
. T L)
(_? sin @)dr’
o AP % # ’ . K .
—risin| 9 +4§,+¢ COSQ+7,— sin ¢

v . x .
Ea (1+cog &=y sing )d S
Likewise

(2) Due to the Free Vortex In the Regzion of Blade

! 1 =vd ([ St piN ot Tar 7
[1147;_:.""—'2‘*2'***5 07,8 dE dr
= 4= k—g[l’l‘ [I28TS
><S P ARAR (16)
[ TR,®

(3) Due to the Bound Vortex

N
Ay e 211‘7 o, fj')(/r’§
o

[RIT

A3 AR,
sty TR

P

(4) Due to the Hub Vortex (if any)
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- 7 - -
Wy V= _‘j)j_/"(’ -sin @7+ cosf'k) (18)

7T

[S°]

where 7y==2zr 0y =4-"0r,0
and n : prop - revolution
Induced velocity at Q) is the vector sum of these

integrated over the whole radii. Thus

Wiy, =201 Wy =10 (19)

with
Weoq == Iz Tod dr’ st | RGP do’dr
(20)

N_1{ 1.0 ,
25 —f/ffﬁ 107, 8y de
k=0 7p z{l' dcr’

L

—=d8 dr’ (21

_ N lf’ -0 S’ T (lva/\Rn , g,
. L — 2322 ddr
W, - 4;: k 0-:"!1 ( ) g IR ‘3 ar
(22)

- I
= S (23)

Volocities in
Equation (19) is given in (1, 2) components and
in order to apply the boundary condition the follo-

wing transform will prove to be helpful.

o ds d& L dé‘
B R R (21)
24

dr : (]/ —L— d?"

Wy ==1, - g TR v W, 7:

where (w,, w,, w,) Sy
and derivatives are obtainable from

(1) and (6).

Formulation of the Problem as an
Integro-Differential Equation

Applying boundary condition requires as in Fig. 6.
Sum of normal components of velocities is
Wa=1w;sin G(§) +w,c08 3(5) + Vi dnintre
Ksin La-+-5(8)]==0 (25)
where

dy, (&
13(5):%

and the Equation (25) is to be
searched for 7,(£) at a particular radius where Q
is being located.
And such procedure is repeated for varius radii
to obtain a blade outline. Equation (25), not fully
develop here is somewhat complex but it is to be

noted for a flat thin 2-D airfoil in a straight flow



Fig. 6.

becomes.

L sin 3(x
L @D e - Viats@)] 20)

with the first and the last terms being retained in
(25). Equation (26) can be solved by expanding
I'(x) function in trigonometric series. Equation (25)

required a use of computer.
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