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1. Introduction

let V" be a C° m-dimensional Riemannian manifold imbedded in a C™° 2~
dimensional Riemannian manifold M”", where m<n. The imbedding being denoted
by

[V —M,

Let B be the mapping induced by f i.e., B=df

| df : T(V)—T(M).
Let T(V, M) be the set of all vectors tangent to the submanifold f(V), it is well
known that

B:T(V)—T(V,M)
is an isomorphism. The set of all vectors normal to f(V) forms a vector bundle
over f(V) which we shall denote by N(V,M). We call N(V,M) the normal
bundle of V™. The vector bundle induced by f from N(V, M) is denoted by N (V).

We denote by C : N(V)— NV, M) the natural isomorphism and by 7.(V) the
space of all C* tensor fields of type (7, s) associated with N(V') D Thus & 8 (V)
=778(V) is the space of all C™ functions defined on V™ while an element of 725 (V)
is a C*° vector field normal to V™ and an element of & (V) is a C* vector field
tangential to V.

Take vector fields X and ¥ defined along f(VV). Let X and Y be the local
extensions of X and ¥ respectively, then [X,¥] is a vector field tangential to

M?" and its restriction [X,Y]/A(V) to f(V) is determined independently of the
choice of these local extensions X and ¥. Therefore we can define [X,Y] by

(1. 1) [(X,Y1=[X,Y1/AV)
Since B is an isomorphism
(1. 2) (BX,BY] =B[X,Y]

1) We denote by &7 (I}) the space of all C* tensor fields of type (7,s) associated with
TV).
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holds for all X € Z (V) and ¥ € ZL(V).

Let G be the Riemannian metric tensor of M”, We define g and g* on V” and
N(V) respectively as follows |
(1.2 g(X, X)) =G(BX, BX,)f
and
g*(N{, Ny )=G(CN{,CN,)

for all X, XZE.Q”'%(V) and N, N, & 75(V).

It can be verified that g is a Riemannian metric tensor in V” which is called the
induced metric tensor in V' and g* is a tensor field defining an inner product in
N(V). The tensor g* is called the induced metric of N(V).

Let V be the Riemannian connexion determined by G in M”", then V induces a
connexion V in f(V) defined by

(1.4 V<Y =(V5¥)/F VD,

where X and Y are arbitrary C° vector fields defined along f(¥V) and tangential
to (V). Thus taking account of (1.1) we have

(1- 5) Vf? — V?X — [X: ?]

Let us suppose in the present paper that M” is a C™ ¢(4, 2) structure manifold

with structure tensor ¢ of type (1. 1)*1. Ilet L and M be the complementary

distributions corresponding to the projection operators / and 7/ respectively, where
(1.6) | [=—3° m=I+§°

‘and [ denotes the identity operator. These operators satisfy the following

relations |

(1.7)

[=1§=—3", $m=mg=§+¢

G=—1"=—1, Fm=m¢ =0.

Such a manifold M” always admits a Riemannian metric say G which satisfies
the following relation

O O

C@HXFV=CEFX,§D
for any two vector fields X,7.

2. Invariant submanifold in a ¢(4,2) structure manifold

Let V" be a C° m-dimensional manifold imbedded as a submanifold in a c”
n-dimensional ¢(4,2) structure manifold M” with (1,1) structure tensor 6. V" is

«! The (1,1) type tensor field ¢ satisfies @4+ ¢2=0, [1].
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defined to be an invariant submanifold of M=, if the tangent space T»(f(v)) of
F(V) is invariant by the linear mapping ¢ at each point p of f(V).

Throughout this paper we assume V" to be an invariant submanifold of M”, so
that for X € .?'é(V) we have

(2.1) . ?BX=B ¢X
where ¢ is a (1,1) tensor field in V".

Let us denote by N and N the Nijenhuis tensors in M”" and V" determined by
the (1,1) tensor fields ¢ and ¢ respectively.

THEOREM 2.1. The Nijenhuis tensor N and N are related as
(2.2) N(BX,BY)=BN(X,Y)

PROOF. We have
N(BX,BY)=[$BX,3BY] —&[BX,$BY] —§ [$BX, BY] +3° [BX, BY]
= [B¢X, BY] —3 [BX, BY| —3 [BX, BY)+3° [BX, BY]
~B[$X, Y] —3BIX, $Y] —3B[¢X,Y] +3°B[X,Y]
=BN(X, Y).

Particular cases. Let us consider the following two cases for any invariant
submanifold V™ in a ¢(4,2) structure manifold M".

Case 1. The distribution M is never tangential to f(V) i.e., no vector field of
the type mX where X is a vector field tangential to f(V) is tangential to f(V).

Later it will be proved that in this case V'™ is necessarily even dimensional.
Case 2. The distribution M is always tangential to f(V).

First of all we will consider case 1.
The distribution M is never tangential to the invariant submanifold f(V),
implies any vector field of the type mX is independent of any vector field of the

form BX,XE.‘Z‘”%(V). Applying ¢ to (2.1) we get
(2.3) - @BX=B§’X |
We now show that the vector fields of type BX, X €. 'é(V) are in the distribu-
tion L, which is equivalent to showing that #(BX)=0. Suppose
| m(BX) # 0.
In view of (1.6) we have
M(BX)=(I+3)BX
=BX+Bd°X
=B(X+¢°X)
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This relation shows that #(BX) 1is tangential to f(V) which contradicts the
hypothesis hence

m(BX)=0
Hence, using (1.7) in (2.3) we get
' Bs°X=-BX
which in view of B being an isomorphism yields
(2. 4) BX=—X
Consequently the (1,1) tensor field ¢ 1n V", is an almost complex structure,
called induced almost complex structure on the invariant submanifold V.
Next, we define a tensor field H(called the Haantjes tensor) of type (1,2) in
M”" as follows
(2.5) HXY)=NXV)-NmX,V)-N(X, ¥ )+N@mX, my)
for any two vector fields X and ¥ g'é(M).

THEOREM 2.2, The (1,2) tensor field H defined in M" satisfies
(2.6) H(BX,BY)=N(BX,BY)=BN(X,Y)
for all X, Y € Z,V).

PROOF. Since any vector field tangential to f(V) is not contained In the
distribution M, we have for any X & & é(V)
m(BX)=0
which in view of (2.5) and (2.2) yields
H(BX, BY )=BN(X,Y).

Combining the above results we can state:

THEOREM 2.3. An invariant submanifold V™ imbedded in a ¢(4,2) structure

manifold such that the distribution M is never tangential to [f(V) is an almost
complex manifold with induced almost complex structure ¢, Consequently the

dimension of V" is even. If in the 0(4,2) structure manifold Haantjes tensor
vanishes then the invariant submenifold is complex.

Case 2. The distribution M is always tangential to the invariant submanifold
A(V) implies for each X € & (V)

(2.7) m(BX)=BmX.
Again we define a (1,1) tensor field in V" by

(2.8) I=—¢°.
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Thus
IX=—¢°X
forall Xe¥ é(V). Applying B on both sides we get
BIX=—B¢°X
= —¢°BX
(2.9) ' BIX=IBX

THEOREM 2.4. (1,1) tensor fields I and m in V" defined by (2.7) and (2.9)
satisfy the following relations

(2.10) I+m=1I, Im=ml=0, I°=1, m°=m.

PROOF. Since
[+m=1I
Operating on a vector of the type BX, X &% é{V), we get
I[BX+mBX=BX
which in view of (2.9) and (2.7) is equivalent to

BIX+BmX=BX
Since B is an isomorphism the above equation yields

[ X+mX=X.
That 1s
[+m=T
Next since
It =1l =0
operating /# and #/ on BX, X & _?"é(V) and using (2.7) and (2.9) we get
(2.11) BlmX=0 and Bm{X =0
which Implies
ImX=0=mlX
or
Im=0, m{=0
Again we have
' =7
and
TAET
Operating / 2 i on BX we get
I’BX=IBX

BI“X=BIX
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:and
Bm‘X=BmX.
‘Hence PX=IX
-and
m°X=mX

“which vields

I°=1 and m°=m.

"The relation (2.10) shows that / and m are complementary projection operators
‘in V"given by

[=—¢°, m=I+¢

"we have by virtue of (2.1)

By X=3BX
= —3°BX
= —B)“X
"which vields
3 +¢ =0

Hence ¢ acts as an ¢(4,2) structure on V™ called the induced 0(4, 2) structure on
™

THEOREM 2.5. We have

(2.12) H(BX,BY)=BH(X,Y)

PROOF. In view of (2.2) we get
H(BX,BY)=BN(X,Y)—BN(mX,Y)—BN(X, mY)+BN(mX, mY)
=BH(X,Y)
‘Hence the result follows.

In the light of above results we can state:

THEOREM 2.6. An invariant cubmanifold V" imbedded in an ¢(4,2) structure

manifold M in such a way that the distribution M is always tangential to f(V)
-is an O(4,2) structure manifold with induced structure §. If the Haantjes lensor

. . rA . . . ™
‘vanishes in M thern it vanishes in V' also.

It is well known [5] that the necessary and sufficient condition for L to be
‘integrable is .

(2.13) mN (X, Y ) +dmN (X, Y )+odmN (X, ¢Y )=0.
Next we have
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(2. 14) mN($BX,$BY )+ N ($BX, BY ) +¢iiN (BX, ¢ BY)
=B(mN(@X, oY ) +omN (¢pX,Y )+ omN (X, Y )].
THEOREM 2.7. If the distribution L is integrable in M’ then the distribution L
is integrable in V™,
PROOF. It follows from (2.13) and (2. 14).
It is well known (5] that the necessary and sufficient condition for M to be

integrable is
2.15) $*N(X,Y)—¢°N(GX,pY) -’ N(@X,Y) - N(X, Y)=0.

THEOREM 2.8. If the distribution M is integrabl e in M then the distribution
M is integrable in V.

PROOF, We have
(2. 16) 3°N(BX,BY) —3°N(3BX, $BY)—¢°N(3BX, BY) -3 N(BX,$BY)
= BIH*N(X,Y) —8°N(BX, oY) -6 N(6X, Y) - "N (X, ¢¥).
From this the result follows.

3. Invariant submanifold of ¢(4, —2) structure manifold

Let M” be an # dimensional differentiable manifold of class C° and let there be

given a tensor field ¢(540) of type (1,1) and of class C™ such that
~A ~2

(3.1) ¢ —¢ =0.
Let I’ and 7’ be the projection operators defined as
(3.2) I=F, w=I-§

where I is the identity operator.
Let I’ and M’ be the complementary distributions corresponding to the projection

operators given by (3.2). These operators satisfy the following relations:

(3.3) =F=V3 =i g=3-F

S ==V, Fa=m'd =0.

Throughout this section let us assume M" to be a @¢(4, —2) structure manifold.
Let V™ be a C™° m dimensional manifold imbedded as a submanifold in a C°° #-
dimensional manifold M”. V" is defined to be an invariant submanifold of M”
if the tangent space T p(f(V)) of (V) is invariant by the linear mapping ¢ at
each point p of f(V). |

Let us assume V'~ to be an invariant submanifold of M”", so that X €% Cl, (V)

we have
(3. 4) 6BX=B¢pX
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where @ is (1, 1) tensor field in V.
Let us denote N and N the Nijenhuis tensors in M” and V" determined by b

and ¢ respectively. It can be easily verified that
(3.5) N(BX,BY)=BN(X,Y).

Particular cases. Let us consider the following two cases for any invariant
submanifold V" in a ¢(4, —2) structure manifold M".

Case 1. The distribution M’ is never tangential to f(V) i.e., no vector field of
the type #’X where X is a vector field tangential to f(V) is tangential to f(V).

Case 2. The distribution M’ is always tangential to (V).

Let us take case 1. The distribution M’ is never tangential to the invariant
submanifold f(V) implies any vector field of the type #’X is independent of any
vector field of the form BX, X &% 'é(V). Applying ¢ to (3.4) we get

(3.6) 5°BX=Bd"X
We now show that the vector fields of type BX, X € Z é(V) are in the distri-
bution L’ which is equivalent to showing that
m’ (BX)=0.
Suppose
m’ (BX ) #O.
In view of (3.2) we have
i’ (BX)=(1—§)(BX)
—=BX~B)*X
=B(X —¢°X)
This relation shows that #m'(BX) is tangential to f(V) which contradicts the
hypothesis. Hence

m’ (BX)=0.
Using (3.3) in (3.6) we get
' B°X=BX
Since B is an isomorphism, hence
3.7) X=X

Consequently the (1,1) tensor field ¢ in V™, isan almost product structure, called
induced almost product structure on the invariant submanifold V.
Let us define a (1,2) type tensor field H (known as Haantjes tensor) in M~ as
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follows
(3.8) H(XP)=N(X 7)— N(ﬁ“’z’X D-NX,w,V)+N@ X, 'Y
for any two vector fields X, Y € & O(M ).

[t can be easlly verified that
(3.9) | H(BX,BY)=BN(X,Y).
In the light of the results obtained above, we can state:

THEOREM 3.1. An invariant submanifold V" imbedded in a ¢(4, —2) structure
manifold such that the distribution M’ is never tangential to f(V) is equipped with
almost product structure. If in the $(4, —2) structure manifold Haantjes tensor
vanishes then in the invariant submanifold Nijzenhuis tensor vanishes.

Case 2. The distribution M ’ 18 always tanﬂ'entml to the Invariant submanifold
Jf(V) implies for each X € ¥ O(V)

(3.10) m’' (BX)=Bm'X
Let us define a (1,1) tensor field in V" by
(3.11) =g
Thus
I'x=¢"X
for all X €& 'é(V). Applying B on both sides we get
(3.12) . BI'X=B#X
—=3°BX
=/BX

THEOREM 3.2. The (1,1) tensor fields I” and m’ in V" defined by (3.10) aend
(3.12) satisfy the following relations

(3.13) Vm'=I, I'm'=m'l’=0, I""=C, =

PROOF. It follows the pattern of the proof of theorem (2.4).
The relation (3.13) shows that /” and m" are complementary projection
operators in V" given by

(3.14) U=¢", m'=I—-¢°
We have by virtue of (3.1)
B"X=3"BX
=3°BX
=By°X
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which vields

(3. 15) | ¢’ —d*=0.
Hence ¢ acts as an ¢(4, —2) structure on V" called the induced ¢(4, —2) structure
on V",

In this case we can easily verify that

(3.16) H(BX,BY)=BH(X,Y)

THEOREM 3.3. An imvariant submanifold V" imbedded in an ¢(4, —2)
structure manifold M in such a way that the distribution M is always tangential
to (V) is an ¢(4, —2) structure manifold, with induced structure ¢. If the

H aantjes tensor vanishes in M, then it vanishes in V' also.

[t is well known [5] that the necessary and sufficient condition for L~ to be

integrable is
(3.17) ' N(@X, oY )+om’ N(9pX, Y )+om'N(X, ¢Y )=0.

THEOREM 3.4. If the distribution L is integrable in M" then the distribution

L is intarrable in V.

PROOF. We have
(3.18) W' N($BX,¢BY)+di' N(6BX, BY )+di' N(BX, $BY)
=B [m' N(@X, oY ) +om' N(¢X,Y)+om' N(X, ¢Y)
‘The result follows from (35.17) and (3. 18).

It 1s also known that the necessary and sufficient condition for M to be

Integrable is
(3.19) FN(X, V) +¢N(BX, §7) +$N(GX, Y)+¢°N(X, $¥) =0
Hence we can state: |

THEOREM 3.5. If the distribution M is integrable in M then the distyibution

M is integrable in V.

PROOF. It follows the pattern of the proof of theorem (2. 8).

Banaras Hindu University
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