INVARIANT SUBMANIFOLD OF A $\phi(4 \pm 2)$ STRUCTURE MANIFOLDS

By H. B. Pandey and R.S. Mishra

1. Introduction

Let V^{m} be a $C^{\infty} m$-dimensional Riemannian manifold imbedded in a $C^{\infty} n$ dimensional Riemannian manifold M^{n}, where $m<n$. The imbedding being denoted by

$$
f: V^{m} \longrightarrow M^{n} .
$$

Let B be the mapping induced by f i. e., $B=d f$

$$
d f: T(V) \longrightarrow T(M)
$$

Let $T(V, M)$ be the set of all vectors tangent to the submanifold $f(V)$, it is well known that

$$
B: T(V) \longrightarrow T(V, M)
$$

is an isomorphism. The set of all vectors normal to $f(V)$ forms a vector bundle over $f(V)$ which we shall denote by $N(V, M)$. We call $N(V, M)$ the normal bundle of V^{m}. The vector bundle induced by f from $N(V, M)$ is denoted by $N(V)$. We denote by $C: N(V) \longrightarrow N(V, M)$ the natural isomorphism and by $\eta_{s}^{r}(V)$ the space of all C^{∞} tensor fields of type (r, s) associated with $N(V)^{1)}$. Thus $\mathscr{L}_{0}^{0}(V)$ $=\eta_{0}^{0}(V)$ is the space of all C^{∞} functions defined on V^{m} while an element of $\eta_{0}^{1}(V)$ is a C^{∞} vector field normal to V^{m} and an element of $\mathscr{L}_{0}^{1}(V)$ is a C^{∞} vector field tangential to V^{m}.

Take vector fields \bar{X} and \bar{Y} defined along $f(V)$. Let \tilde{X} and \tilde{Y} be the local extensions of \bar{X} and \bar{Y} respectively, then $[\bar{X}, \tilde{Y}]$ is a vector field tangential to M^{n} and its restriction $[\tilde{X}, \tilde{Y}] / f(V)$ to $f(V)$ is determined independently of the choice of these local extensions \bar{X} and \tilde{Y}. Therefore we can define $[\bar{X}, \bar{Y}]$ by

$$
\begin{equation*}
[\bar{X}, \bar{Y}]=[\bar{X}, \tilde{Y}] / f(V) \tag{1.1}
\end{equation*}
$$

Since B is an isomorphism
(1.2)

$$
[B X, B Y]=B[X, Y]
$$

1) We denote by $\mathscr{L}_{s}^{r}(V)$ the space of all C^{∞} tensor fields of type (r, s) associated with $T(V)$.
holds for all $X \in \mathscr{L}_{0}^{1}(V)$ and $Y \in \mathscr{L}_{0}^{1}(V)$.
Let \tilde{G} be the Riemannian metric tensor of M^{n}. We define g and g^{*} on V^{m} and $N(V)$ respectively as follows

$$
\begin{equation*}
g\left(X_{1}, X_{2}\right)=\tilde{G}\left(B X_{1}, B X_{2}\right) f \tag{1.2}
\end{equation*}
$$

and

$$
g^{*}\left(N_{1}, N_{2}\right)=G\left(C N_{1}, C N_{2}\right)
$$

for all $X_{1}, X_{2} \in \mathscr{L}{ }_{0}^{1}(V)$ and $N_{1}, N_{2} \in \eta_{0}^{1}(V)$.
It can be verified that g is a Riemannian metric tensor in V^{m} which is called the induced metric tensor in V^{m} and g^{*} is a tensor field defining an inner product in $N(V)$. The tensor g^{*} is called the induced metric of $N(V)$.

Let $\tilde{\nabla}$ be the Riemannian connexion determined by \tilde{G} in M^{n}, then $\tilde{\nabla}$ induces a connexion ∇ in $f(V)$ defined by

$$
\begin{equation*}
\nabla_{\bar{X}} \bar{Y}=\left(\widetilde{\nabla} \widetilde{X}_{\tilde{X}} \tilde{Y}\right) / f(V), \tag{1.4}
\end{equation*}
$$

where \bar{X} and \bar{Y} are arbitrary C^{∞} vector fields defined along $f(V)$ and tangential to $f(V)$. Thus taking account of (1.1) we have

$$
\begin{equation*}
\nabla_{\bar{X}} \bar{Y}-\nabla_{\bar{Y}} \bar{X}=[\bar{X}, \bar{Y}] \tag{1.5}
\end{equation*}
$$

Let us suppose in the present paper that M^{n} is a $C^{\infty} \phi(4,2)$ structure manifold with structure tensor $\tilde{\phi}$ of type (1.1)*1. Let \tilde{L} and \tilde{M} be the complementary distributions corresponding to the projection operators \tilde{l} and \widetilde{m} respectively, where

$$
\text { (1.6) } \quad \tilde{l}=-\tilde{\phi}^{2}, m=I+\tilde{\phi}^{2}
$$

and I denotes the identity operator. These operators satisfy the following relations

$$
\begin{align*}
& \tilde{\phi} \tilde{l}=\tilde{l} \tilde{\phi}=-\tilde{\phi}^{3}, \tilde{\phi} \tilde{m}=\tilde{m} \tilde{\phi}=\tilde{\phi}^{3}+\tilde{\phi} \tag{1.7}\\
& \tilde{\phi}^{2} \tilde{l}=-\tilde{l}^{2}=-\tilde{l}, \tilde{\phi}^{2} \tilde{m}=\tilde{m} \tilde{\phi}^{2}=0 .
\end{align*}
$$

Such a manifold M^{n} always admits a Riemannian metric say \tilde{G} which satisfies the following relation

$$
\tilde{G}\left(\tilde{\phi}^{3} \tilde{X}, \tilde{\phi}^{3} \tilde{Y}\right)=\tilde{G}\left(\tilde{\phi}^{2} \tilde{X}, \tilde{\phi}^{2} \tilde{Y}\right)
$$

for any two vector fields \tilde{X}, \tilde{Y}.

2. Invariant submanifold in a $\phi(4,2)$ structure manifold

Let V^{m} be a $C^{\infty} m$-dimensional manifold imbedded as a submanifold in a C^{∞} n-dimensional $\phi(4,2)$ structure manifold M^{n} with (1,1) structure tensor $\widetilde{\phi} . V^{m}$ is $*^{1}$ The (1,1) type tensor field $\tilde{\phi}$ satisfies $\widetilde{\phi}^{4}+\tilde{\phi}^{2}=0$, [1].
defined to be an invariant submanifold of M^{n}, if the tangent space $T_{p}(f(v))$ of $f(V)$ is invariant by the linear mapping $\widetilde{\phi}$ at each point p of $f(V)$.

Throughout this paper we assume V^{m} to be an invariant submanifold of M^{n}, so that for $X \in \mathscr{L}_{0}^{1}(V)$ we have

$$
\begin{equation*}
\widetilde{\phi} B X=B \quad \phi X \tag{2.1}
\end{equation*}
$$

where ϕ is a (1,1) tensor field in V^{m}.
Let us denote by \widetilde{N} and N the Nijenhuis tensors in M^{n} and V^{m} determined by the (1,1) tensor fields $\tilde{\phi}$ and ϕ respectively.

THEOREM 2.1. The Nijenhuis tensor \widetilde{N} and N are related as

$$
\begin{equation*}
\widetilde{N}(B X, B Y)=B N(X, Y) \tag{2.2}
\end{equation*}
$$

PROOF. We have

$$
\begin{aligned}
\widetilde{N}(B X, B Y) & =[\widetilde{\phi} B X, \widetilde{\phi} B Y]-\widetilde{\phi}[B X, \tilde{\phi} B Y]-\tilde{\phi}[\widetilde{\phi} B X, B Y]+\tilde{\phi}^{2}[B X, B Y] \\
& =[B \phi X, B \phi Y]-\widetilde{\phi}[B X, B \phi Y]-\widetilde{\phi}[B \phi X, B Y)+\tilde{\phi}^{2}[B X, B Y] \\
& =B[\phi X, \phi Y]-\widetilde{\phi} B[X, \phi Y]-\tilde{\phi} B[\phi X, Y]+\tilde{\phi}^{2} B[X, Y] \\
& =B N(X, Y) .
\end{aligned}
$$

Particular cases. Let us consider the following two cases for any invariant submanifold V^{m} in a $\phi(4,2)$ structure manifold M^{n}.
Case 1. The distribution \tilde{M} is never tangential to $f(V)$ i. e., no vector field of the type $\tilde{m} \bar{X}$ where \bar{X} is a vector field tangential to $f(V)$ is tangential to $f(V)$. Later it will be proved that in this case $V^{i n}$ is necessarily even dimensional.

Case 2. The distribution \tilde{M} is always tangential to $f(V)$.
First of all we will consider case 1.
The distribution \tilde{M} is never tangential to the invariant submanifold $f(V)$, implies any vector field of the type $\tilde{m} \bar{X}$ is independent of any vector field of the form $B X, X \in \mathscr{L}_{0}^{1}(V)$. Applying ϕ to (2.1) we get

$$
\begin{equation*}
\tilde{\phi}^{2} B X=B \phi^{2} \Psi \tag{2.3}
\end{equation*}
$$

We now show that the vector fields of type $B X, X \in \mathscr{L}_{0}^{1}(V)$ are in the distribution \widetilde{L}, which is equivalent to showing that $\widetilde{m}(B X)=0$. Suppose

$$
\widetilde{m}(B X) \neq 0
$$

In view of (1.6) we have

$$
\begin{aligned}
\tilde{m}(B X) & =\left(I+\tilde{\phi}^{2}\right) B X \\
& =B X+B \phi^{2} X \\
& =B\left(X+\phi^{2} X\right)
\end{aligned}
$$

This relation shows that $\widetilde{m}(B X)$ is tangential to $f(V)$ which contradicts the hypothesis hence

$$
\tilde{m}(B X)=0
$$

Hence, using (1.7) in (2.3) we get

$$
B \phi^{2} X=-B X
$$

which in view of B being an isomorphism yields

$$
\begin{equation*}
\phi^{2} X=-X \tag{2.4}
\end{equation*}
$$

Consequently the (1,1) tensor field ϕ in V^{m}, is an almost complex structure, called induced almost complex structure on the invariant submanifold V^{m}.

Next, we define a tensor field \widetilde{H} (called the Haantjes tensor) of type (1,2) in M^{n} as follows

$$
\begin{equation*}
\widetilde{H}(\tilde{X}, \tilde{Y})=\widetilde{N}(\tilde{X}, \tilde{Y})-\widetilde{N}(\widetilde{m} \tilde{X}, \tilde{Y})-\widetilde{N}(\widetilde{X}, \tilde{m} \tilde{Y})+\widetilde{N}(\tilde{m} \tilde{X}, \tilde{m} \tilde{Y}) \tag{2.5}
\end{equation*}
$$

for any two vector fields \bar{X} and $\tilde{Y} \in \mathscr{L}_{0}^{1}(M)$.
THEOREM 2.2. The $(1,2)$ tensor field H defined in M^{n} satisfies

$$
\begin{equation*}
\widetilde{H}(B X, B Y)=\widetilde{N}(B X, B Y)=B N(X, Y) \tag{2.6}
\end{equation*}
$$

for all $X, Y \in \mathscr{L}_{0}^{1}(V)$.
PROOF. Since any vector field tangential to $f(V)$ is not contained in the distribution \tilde{M}, we have for any $X \in \mathscr{L}_{0}^{1}(V)$

$$
\widetilde{m}(B X)=0
$$

which in view of (2.5) and (2.2) yields

$$
\widetilde{H}(B X, B Y)=B N(X, Y)
$$

Combining the above results we can state:
THEOREM 2 3. An invariant submanifold V^{m} imbedded in a $\phi(4,2)$ structure manifold such that the distribution \widetilde{M} is never tangential to $f(V)$ is an almost complex manifold with induced almost complex structure ϕ. Consequently the dimension of V^{m} is even. If in the $\phi(4,2)$ structure manifold Haantjes tensor vanishes then the invariant submanifold is complex.

Case 2. The distribution \tilde{M} is always tangential to the invariant submanifold $f(V)$ implies for each $X \in \mathscr{L}_{0}^{1}(V)$

$$
\begin{equation*}
\tilde{m}(B X)=B m X \tag{2.7}
\end{equation*}
$$

Again we define a $(1,1)$ tensor field in V^{m} by

$$
\begin{equation*}
l=-\phi^{2} . \tag{2.8}
\end{equation*}
$$

Thus

$$
l X=-\phi^{2} X
$$

for all $X \in \mathscr{L}_{0}^{1}(V)$. Applying B on both sides we get

$$
\begin{array}{r}
B l X=-B \phi^{2} X \\
=-\phi^{2} B X \\
B l X=\bar{l} B X \tag{2.9}
\end{array}
$$

THEOREM 2.4. (1,1) tensor fields l and m in V^{m} defined by (2.7) and (2.9) satisfy the following relations

$$
\begin{equation*}
l+m=I, \quad l m=m l=0, \quad l^{2}=l, \quad m^{2}=m \tag{2.10}
\end{equation*}
$$

PROOF. Since

$$
\tilde{l}+\tilde{m}=I
$$

Operating on a vector of the type $B X, X \in \mathscr{L}_{0}^{1}(V)$, we get

$$
\tilde{l} B X+\tilde{m} B X=B X
$$

which in view of (2.9) and (2.7) is equivalent to

$$
B l X+B m X=B X
$$

Since B is an isomorphism the above equation yields

$$
l X+m X=X
$$

That is

$$
l+m=I
$$

Next since

$$
\begin{gather*}
\tilde{l} \tilde{m}=\tilde{m} \tilde{l}=0 \\
\text { operating } \tilde{l} \tilde{m} \text { and } \tilde{m} \tilde{l} \text { on } B X, X \in \mathscr{L}_{0}^{1}(V) \text { and using (2.7) and (2.9) we get } \\
\begin{array}{c}
(2.11) \quad B l m X=0 \text { and } B m l X=0
\end{array} \tag{2.11}
\end{gather*}
$$

which implies

$$
l m X=0=m l X
$$

or

$$
l m=0, m l=0
$$

Again we have

$$
\tilde{l}^{2}=\tilde{l}
$$

and

$$
\tilde{m}^{2}=\tilde{m}
$$

Operating $\tilde{l}^{2}, \tilde{m}^{2}$ on $B X$ we get

$$
\begin{aligned}
& \tilde{l}^{2} \cdot B X=\tilde{l} B X \\
& B l^{2} X=B l X
\end{aligned}
$$

:and

Hence

$$
B m^{2} X=B m X
$$

and

$$
m^{2} X=m X
$$

which yields

$$
l^{2}=l \text { and } m^{2}=m
$$

The relation (2.10) shows that l and m are complementary projection operators in V^{m} given by

$$
l=-\phi^{2}, \quad m=I+\phi
$$

we have by virtue of (2.1)

$$
\begin{aligned}
B \phi^{4} X & =\widetilde{\phi}^{4} B X \\
& =-\tilde{\phi}^{2} B X \\
& =-B \phi^{2} X
\end{aligned}
$$

which yields

$$
\phi^{4}+\phi^{2}=0
$$

Hence ϕ acts as an $\phi(4,2)$ structure on V^{m} called the induced $\phi(4,2)$ structure on V^{m}.

THEOREM 2.5. We have

$$
\begin{equation*}
\widetilde{H}(B X, B Y)=B H(X, Y) \tag{2.12}
\end{equation*}
$$

PROOF. In view of (2.2) we get

$$
\begin{aligned}
\widetilde{H}(B X, B Y) & =B N(X, Y)-B N(m X, Y)-B N(X, m Y)+B N(m X, m Y) \\
& =B H(X, Y)
\end{aligned}
$$

Hence the result follows.
In the light of above results we can state:
THEOREM 2.6. An invariant submanifold V^{m} imbedded in an $\phi(4,2)$ structure manifold M^{n} in such a way that the distribution \tilde{M} is always tangential to $f(V)$ is an $\phi(4,2)$ structure manifold with induced structure ϕ. If the Haantjes tensor vanishes in M^{n} then it vanishes in V^{m} also.

It is well known [5] that the necessary and sufficient condition for L to be integrable is
(2.13)

$$
m s N(\phi X, \phi Y)+\phi m N(\phi X, Y)+\phi m N(X, \phi Y)=0 .
$$

Next we have

$$
\begin{align*}
& \widetilde{m} \widetilde{N}(\widetilde{\phi} B X, \widetilde{\phi} B Y)+\widetilde{\phi} \tilde{m} \widetilde{N}(\widetilde{\phi} B X, B Y)+\widetilde{\phi} \tilde{m} \widetilde{N}(B X, \widetilde{\phi} B Y) \tag{2.14}\\
& \quad=B[m N(\phi X, \phi Y)+\phi m N(\phi X, Y)+\phi m N(X, \phi Y)] .
\end{align*}
$$

THEOREM 2.7. If the distribution \widetilde{L} is integrable in M^{n} then the distribution L is integrable in V^{m}.

PROOF. It follows from (2.13) and (2.14).
It is well known [5] that the necessary and sufficient condition for M to be integrable is

$$
\begin{equation*}
\phi^{2} N(X, Y)-\phi^{2} N(\phi X, \phi Y)-\phi^{3} N(\phi X, Y)-\phi^{3} N(X, \phi Y)=0 . \tag{2.15}
\end{equation*}
$$

THEOREM 2.8. If the distribution \widetilde{M} is integrable in M^{n} then the distribution M is integrable in V^{m}.

PROOF. We have
(2.16) $\tilde{\phi}^{2} \widetilde{N}(B X, B Y)-\tilde{\phi}^{2} \widetilde{N}(\widetilde{\phi} B X, \tilde{\phi} B Y)-\tilde{\phi}^{3} \widetilde{N}(\widetilde{\phi} B X, B Y)-\tilde{\phi}^{3} N(B X, \tilde{\phi} B Y)$ $=B\left[\phi^{2} N(X, Y)-\phi^{2} N(\phi X, \phi Y)-\phi^{3} N(\phi X, Y)-\phi^{3} N(X, \phi Y)\right.$.
From this the result follows.

3. Invariant submanifold of $\phi(4,-2)$ structure manifold

Let M^{n} be an n dimensional differentiable manifold of class C^{∞} and let there be given a tensor field $\widetilde{\phi}(\neq 0)$ of type (1,1) and of class C^{∞} such that

$$
\begin{equation*}
\tilde{\phi}^{4}-\tilde{\phi}^{2}=0 . \tag{3.1}
\end{equation*}
$$

Let \tilde{l}^{\prime} and \tilde{m}^{\prime} be the projection operators defined as

$$
\begin{equation*}
\tilde{l}^{\prime}=\tilde{\phi}^{2}, \tilde{m}^{\prime}=I-\tilde{\phi}^{2} \tag{3.2}
\end{equation*}
$$

where I is the identity operator.
Let \widetilde{L}^{\prime} and \widetilde{M}^{\prime} be the complementary distributions corresponding to the projection operators given by (3.2). These operators satisfy the following relations:

$$
\begin{align*}
& \tilde{\phi} \tilde{l}^{\prime}=\tilde{\phi}^{3}=\tilde{l}^{\prime} \tilde{\phi}, \quad \tilde{\phi} \tilde{m}^{\prime}=\tilde{m}^{\prime} \tilde{\phi}=\tilde{\phi}-\tilde{\phi}^{3} \tag{3.3}\\
& \tilde{\phi}^{2} \bar{l}^{\prime}=\tilde{\phi}^{2}=\tilde{l}^{\prime}, \tilde{\phi}^{2} \tilde{m}^{\prime}=\tilde{m}^{\prime} \tilde{\phi}^{2}=0 .
\end{align*}
$$

Throughout this section let us assume M^{n} to be a $\phi(4,-2)$ structure manifold. Let V^{m} be a $C^{\infty} m$ dimensional manifold imbedded as a submanifold in a $C^{\infty} n^{-}$ dimensional manifold $M^{n} . V^{m}$ is defined to be an invariant submanifold of M^{n} if the tangent space $T_{p}(f(V))$ of $f(V)$ is invariant by the linear mapping $\tilde{\phi}$ at each point p of $f(V)$.

Let us assume V^{m} to be an invariant submanifold of M^{n}, so that $X \in \mathscr{L}_{0}^{1}(V)$ we have

$$
\begin{equation*}
\tilde{\phi} B X=B \phi X \tag{3.4}
\end{equation*}
$$

where ϕ is $(1,1)$ tensor field in V^{m}.
Let us denote \widetilde{N} and N the Nijenhuis tensors in M^{n} and V^{m} determined by $\tilde{\phi}$ and ϕ respectively. It can be easily verified that

$$
\begin{equation*}
\tilde{N}(B X, B Y)=B N(X, Y) \tag{3.5}
\end{equation*}
$$

Particular cases. Let us consider the following two cases for any invariant submanifold V^{m} in a $\phi(4,-2)$ structure manifold M^{n}.

Case 1. The distribution \tilde{M}^{\prime} is never tangential to $f(V)$ i. e., no vector field of the type $\widetilde{m}^{\prime} \bar{X}$ where \bar{X} is a vector field tangential to $f(V)$ is tangential to $f(V)$.

Case 2. The distribution \tilde{M}^{\prime} is always tangential to $f(V)$.
Let us take case 1. The distribution \tilde{M}^{\prime} is never tangential to the invariant submanifold $f(V)$ implies any vector field of the type $\widetilde{m}^{\prime} \bar{X}$ is independent of any vector field of the form $B X, X \in \mathscr{L}_{0}^{1}(V)$. Applying ϕ to (3.4) we get

$$
\begin{equation*}
\tilde{\phi}^{2} B X=B \phi^{2} X \tag{3.6}
\end{equation*}
$$

We now show that the vector fields of type $B X, X \in \mathscr{L}_{0}^{1}(V)$ are in the distribution \widetilde{L}^{\prime} which is equivalent to showing that

$$
m^{\prime}(B X)=0 .
$$

Suppose

$$
m^{\prime}(B X) \neq 0
$$

In view of (3.2) we have

$$
\begin{aligned}
\widetilde{m}^{\prime}(B X) & =\left(I-\tilde{\phi}^{2}\right)(B X) \\
& =B X-B \phi^{2} X \\
& =B\left(X-\phi^{2} X\right)
\end{aligned}
$$

This relation shows that $\widetilde{m}^{\prime}(B X)$ is tangential to $f(V)$ which contradicts the hypothesis. Hence

$$
\tilde{m}^{\prime}(B X)=0
$$

Using (3.3) in (3.6) we get

$$
B \phi^{2} X=B X
$$

Since B is an isomorphism, hence

$$
\begin{equation*}
\phi^{2} X=X \tag{3.7}
\end{equation*}
$$

Consequently the (1,1) tensor field ϕ in V^{m}, is an almost product structure, called induced almost product structure on the invariant submanifold V^{m}.

Let us define a (1,2) type tensor field H (known as Haantjes tensor) in M^{n} as
follows
(3.8)

$$
\widetilde{H}(\tilde{X}, \tilde{Y}) \xlongequal{\text { def }} \widetilde{N}(\tilde{X}, \tilde{Y})-\widetilde{N}\left(\tilde{m}^{\prime} \tilde{X}, \tilde{Y}\right)-N\left(\tilde{X}, \tilde{m}^{\prime}, \tilde{Y}\right)+\widetilde{N}\left(\tilde{m}^{\prime} \tilde{X}, \tilde{m}^{\prime} \tilde{Y}\right)
$$

for any two vector fields $X, Y \in \mathscr{L}_{0}^{1}(M)$.
It can be easily verified that

$$
\begin{equation*}
\widetilde{H}(B X, B Y)=B N(X, Y) \tag{3.9}
\end{equation*}
$$

In the light of the results obtained above, we can state:
THEOREM 3.1. An invariant submanifold V^{m} imbedded in a $\phi(4,-2)$ structure manifold such that the distribution \tilde{M}^{\prime} is never tangential to $f(V)$ is equipped with almost product structure. If in the $\phi(4,-2)$ structure manifold Haantjes tensor vanishes then in the invariant submanifold Nijenhuis tensor vanishes.

Case 2. The distribution \tilde{M}^{\prime} is always tangential to the invariant submanifold $f(V)$ implies for each $X \in \mathscr{L}_{0}^{1}(V)$.

$$
\begin{equation*}
\tilde{m}^{\prime}(B X)=B m^{\prime} X \tag{3.10}
\end{equation*}
$$

Let us define a $(1,1)$ tensor field in V^{m} by

$$
\begin{equation*}
l^{\prime}=\phi^{2} \tag{3.11}
\end{equation*}
$$

Thus

$$
l^{\prime} x=\phi^{2} X
$$

for all $X \in \mathscr{L}_{0}^{1}(V)$. Applying B on both sides we get

$$
\begin{align*}
B l^{\prime} X & =B \phi^{2} X \tag{3.12}\\
& =\tilde{\phi}^{2} B X \\
& =\tilde{l} B X
\end{align*}
$$

THEOREM 3.2. The (1,1) tensor fields l^{\prime} and m^{\prime} in V^{m} defined by (3.10) and (3.12) satisfy the following relations
(3.13) $l^{\prime}+m^{\prime}=I, l^{\prime} m^{\prime}=m^{\prime} l^{\prime}=0, l^{\prime 2}=l^{\prime}, m^{2}=m^{\prime}$.

PROOF. It follows the pattern of the proof of theorem (2.4).
The relation (3.13) shows that l^{\prime} and m^{\prime} are complementary projection operators in V^{m} given by

$$
\begin{equation*}
l^{\prime}=\phi^{2}, \quad m^{\prime}=I-\phi^{2} . \tag{3.14}
\end{equation*}
$$

We have by virtue of (3.1)

$$
\begin{aligned}
B \phi^{4} X & =\tilde{\phi}^{4} B X \\
& =\tilde{\phi}^{2} B X \\
& =B \phi^{2} X
\end{aligned}
$$

which yields
(3.15)

$$
\phi^{4}-\phi^{2}=0
$$

Hence ϕ acts as an $\phi(4,-2)$ structure on V^{m} called the induced $\phi(4,-2)$ structure on V^{m}.

In this case we can easily verify that

$$
\begin{equation*}
\widetilde{H}(B X, B Y)=B H(X, Y) \tag{3.16}
\end{equation*}
$$

THEOREM 3.3. An invariant submanifold V^{m} imbedded in an $\phi(4,-2)$ structure manifold M^{n} in such a way that the distribution \tilde{M} is always tangential to $f(V)$ is an $\phi(4,-2)$ structure manifold, with induced structure ϕ. If the Haantjes tensor vanishes in M^{n}, then it vanishes in V^{m} also.

It is well known [5] that the necessary and sufficient condition for L^{\prime} to be integrable is

$$
\begin{equation*}
m^{\prime} N(\phi X, \phi Y)+\phi m^{\prime} N(\phi X, Y)+\phi m^{\prime} N(X, \phi Y)=0 \tag{3.17}
\end{equation*}
$$

THEOREM 3.4. If the distribution \widetilde{L} is integrable in M^{n} then the distribution L is intearrable in V^{m}.

PROOF. We have
(3.18)

$$
\begin{aligned}
& \widetilde{m}^{\prime} \widetilde{N}(\widetilde{\phi} B X, \tilde{\phi} B Y)+\widetilde{\phi} \tilde{m}^{\prime} \widetilde{N}(\tilde{\phi} B X, B Y)+\widetilde{\phi} \widetilde{m}^{\prime} \widetilde{N}(B X, \widetilde{\phi} B Y) \\
& \quad=B\left[m^{\prime} N(\phi X, \dot{\phi} Y)+\phi m^{\prime} N(\phi X, Y)+\phi m^{\prime} N(X, \phi Y)\right.
\end{aligned}
$$

The result follows from (3.17) and (3.18).
It is also known that the necessary and sufficient condition for M^{\prime} to be integrable is

$$
\begin{equation*}
\phi^{2} N(X, Y)+\phi^{2} N(\phi X, \phi Y) \div \phi^{3} N(\phi X, Y)+\phi^{3} N(X, \phi Y)=0 \tag{3.19}
\end{equation*}
$$

Hence we can state:
THEOREM 3.5. If the distribution \tilde{M} is integrable in M^{n} then the distribution M is integrable in V^{m}.

PROOF. It follows the pattern of the proof of theorem (2.8).

Banaras Hindu University
Varanasi 221005, India

REFERENCES

[1] Yano, K.C.S. Houl and Chen, Structures defined by a tensor ϕ of type (1,1) satisfying $\phi^{4} \pm \phi^{2}=0$, Tensor N.S. 23 (1972) 81-87.
[2] Yano, K., Differential geometry on Complex and almost complex spaces, Pergamon Press (1964).
[3] Clark R.S. and D.S. Geol, Almost tangent structure manifolds, of the second order, Tohoku Math. J.24, 79-92.
[4] Yano, K. and S.Ishihara, Invariant submanifolds of an almost contact manifold, Kōdai Math. Sem. Rep. 21 (1969) 350-367.
[5) R.S. Mishra and H. B. Pandey, Integrability of certain structures (under print).

