Kyungpook Math. J. Volume 14, Number 2 December, 1974

INVARIANT SUBMANIFOLD OF A $\phi(4\pm 2)$ **STRUCTURE MANIFOLDS**

By H.B. Pandey and R.S. Mishra

1. Introduction

Let V^m be a C^{∞} *m*-dimensional Riemannian manifold imbedded in a C^{∞} *n*dimensional Riemannian manifold M^n , where m < n. The imbedding being denoted by

$$f: V^m \longrightarrow M^n$$
.

Let B be the mapping induced by f i.e., B = df

 $df: T(V) \longrightarrow T(M).$

Let T(V, M) be the set of all vectors tangent to the submanifold f(V), it is well known that

 $B: T(V) \longrightarrow T(V, M)$

is an isomorphism. The set of all vectors normal to f(V) forms a vector bundle over f(V) which we shall denote by N(V, M). We call N(V, M) the normal bundle of V^m . The vector bundle induced by f from N(V, M) is denoted by N(V). We denote by $C: N(V) \longrightarrow N(V, M)$ the natural isomorphism and by $\eta'_s(V)$ the space of all C^{∞} tensor fields of type (r, s) associated with $N(V)^{1}$. Thus $\mathscr{L}_{0}^{0}(V)$ $=\eta_0^0(V)$ is the space of all C^{∞} functions defined on V^m while an element of $\eta_0^1(V)$ is a C^{∞} vector field normal to V^m and an element of $\mathscr{L}_0^1(V)$ is a C^{∞} vector field tangential to V^m .

Take vector fields \overline{X} and \overline{Y} defined along f(V). Let \overline{X} and \overline{Y} be the local extensions of \overline{X} and \overline{Y} respectively, then $[\overline{X}, \overline{Y}]$ is a vector field tangential to M'' and its restriction $[\tilde{X}, \tilde{Y}]/f(V)$ to f(V) is determined independently of the choice of these local extensions \overline{X} and \overline{Y} . Therefore we can define $[\overline{X}, \overline{Y}]$ by $[\overline{X},\overline{Y}] = [\overline{X},\overline{Y}] / f(V)$ (1.1)

Since B is an isomorphism

[BX, BY] = B[X, Y](1.2)

1) We denote by $\mathscr{L}'(V)$ the space of all C^{∞} tensor fields of type (r,s) associated with T(V).

-.

holds for all $X \in \mathscr{L}_0^1(V)$ and $Y \in \mathscr{L}_0^1(V)$.

244

Let \tilde{G} be the Riemannian metric tensor of M^n . We define g and g^* on V^m and N(V) respectively as follows

 $g(X_1, X_2) = \tilde{G}(BX_1, BX_2)f$ (1.2)and

 $g^*(N_1, N_2) = G(CN_1, CN_2)$

for all $X_1, X_2 \in \mathscr{L}_0^1(V)$ and $N_1, N_2 \in \eta_0^1(V)$.

It can be verified that g is a Riemannian metric tensor in V^m which is called the induced metric tensor in V^m and g^* is a tensor field defining an inner product in N(V). The tensor g^* is called the induced metric of N(V).

Let $\tilde{\nabla}$ be the Riemannian connexion determined by \tilde{G} in M^n , then $\tilde{\nabla}$ induces a connexion ∇ in f(V) defined by

 $\nabla_{\overline{X}}\overline{Y} = (\widetilde{\nabla}_{\widetilde{X}}\widetilde{Y})/f(V),$ (1, 4)

where \overline{X} and \overline{Y} are arbitrary C^{∞} vector fields defined along f(V) and tangential to f(V). Thus taking account of (1.1) we have

$$(1.5) \qquad \qquad \nabla_{\overline{X}}Y - \nabla_{\overline{Y}}X = [X, Y]$$

Let us suppose in the present paper that M^n is a $C^{\infty} \phi(4,2)$ structure manifold with structure tensor $\tilde{\phi}$ of type (1.1)*¹. Let \tilde{L} and \tilde{M} be the complementary distributions corresponding to the projection operators \tilde{l} and \tilde{m} respectively, where $\tilde{l} = -\tilde{\phi}^2, m = I + \tilde{\phi}^2$ (1.6)

and I denotes the identity operator. These operators satisfy the following relations

(1.7)

$$\widetilde{\phi}\tilde{l} = \tilde{l}\widetilde{\phi} = -\widetilde{\phi}^{3}, \quad \widetilde{\phi}\widetilde{m} = \widetilde{m}\widetilde{\phi} = \widetilde{\phi}^{3} + \widetilde{\phi}$$

$$\widetilde{\phi}^{2}\tilde{l} = -\tilde{l}^{2} = -\tilde{l}, \quad \widetilde{\phi}^{2}\widetilde{m} = \widetilde{m}\widetilde{\phi}^{2} = 0.$$

Such a manifold M^n always admits a Riemannian metric say \tilde{G} which satisfies the following relation

$$\tilde{G}(\tilde{\phi}^3 \tilde{X}, \tilde{\phi}^3 \tilde{Y}) = \tilde{G}(\tilde{\phi}^2 \tilde{X}, \tilde{\phi}^2 \tilde{Y})$$

for any two vector fields \tilde{X}, \tilde{Y} .

2. Invariant submanifold in a $\phi(4, 2)$ structure manifold

Let V^m be a C^{∞} *m*-dimensional manifold imbedded as a submanifold in a C^{∞} *n*-dimensional $\phi(4,2)$ structure manifold M^n with (1,1) structure tensor $\tilde{\phi}$. V^m is

*¹ The (1,1) type tensor field $\tilde{\phi}$ satisfies $\tilde{\phi}^4 + \tilde{\phi}^2 = 0$, [1].

defined to be an invariant submanifold of M^n , if the tangent space $T_p(f(v))$ of f(V) is invariant by the linear mapping $\tilde{\phi}$ at each point p of f(V).

Throughout this paper we assume V^m to be an invariant submanifold of M^n , so that for $X \in \mathscr{L}_0^{-1}(V)$ we have

(2.1) $\tilde{\phi}BX = B \ \phi X$ where ϕ is a (1,1) tensor field in V^m . Let us denote by \tilde{N} and N the Nijenhuis tensors in M^n and V^m determined by

the (1, 1) tensor fields $\tilde{\phi}$ and ϕ respectively.

THEOREM 2.1. The Nijenhuis tensor \tilde{N} and N are related as (2.2) $\tilde{N}(BX, BY) = BN(X, Y)$

PROOF. We have

$$\begin{split} \widetilde{N}(BX, BY) &= [\widetilde{\phi}BX, \widetilde{\phi}BY] - \widetilde{\phi} [BX, \widetilde{\phi}BY] - \widetilde{\phi} [\widetilde{\phi}BX, BY] + \widetilde{\phi}^2 [BX, BY] \\ &= [B\phi X, B\phi Y] - \widetilde{\phi} [BX, B\phi Y] - \widetilde{\phi} [B\phi X, BY) + \widetilde{\phi}^2 [BX, BY] \\ &= B[\phi X, \phi Y] - \widetilde{\phi} B[X, \phi Y] - \widetilde{\phi} B[\phi X, Y] + \widetilde{\phi}^2 B[X, Y] \\ &= BN(X, Y). \end{split}$$

Particular cases. Let us consider the following two cases for any invariant submanifold V^m in a $\phi(4, 2)$ structure manifold M^n .

Case 1. The distribution \tilde{M} is never tangential to f(V) i.e., no vector field of the type $\tilde{m}\overline{X}$ where \overline{X} is a vector field tangential to f(V) is tangential to f(V). Later it will be proved that in this case V^m is necessarily even dimensional.

Case 2. The distribution \tilde{M} is always tangential to f(V).

First of all we will consider case 1. The distribution \tilde{M} is never tangential to the invariant submanifold f(V), implies any vector field of the type $\tilde{m}\overline{X}$ is independent of any vector field of the

form $BX, X \in \mathscr{L}_0^1(V)$. Applying ϕ to (2.1) we get

$$(2.3) \qquad \qquad \widetilde{\phi}^2 B X = B \phi^2 X$$

We now show that the vector fields of type $BX, X \in \mathscr{L}_0^1(V)$ are in the distribution \tilde{L} , which is equivalent to showing that $\tilde{m}(BX)=0$. Suppose $\tilde{m}(BX) \neq 0$.

In view of (1.6) we have

$$\widetilde{m}(BX) = (I + \widetilde{\phi}^2)BX$$
$$= BX + B\phi^2 X$$
$$= B(X + \phi^2 X)$$

This relation shows that $\widetilde{m}(BX)$ is tangential to f(V) which contradicts the hypothesis hence

$$\widetilde{m}(BX)=0$$

Hence, using (1.7) in (2.3) we get

-

$$B\phi^2 X = -BX$$

which in view of B being an isomorphism yields

$$(2.4) \qquad \qquad \phi^2 X = -X$$

Consequently the (1,1) tensor field ϕ in V^m , is an almost complex structure, called induced almost complex structure on the invariant submanifold V^m . Next, we define a tensor field \tilde{H} (called the Haantjes tensor) of type (1,2) in M^n as follows

(2.5) $\widetilde{H}(\tilde{X},\tilde{Y}) = \widetilde{N}(\tilde{X},\tilde{Y}) - \widetilde{N}(\tilde{m}\tilde{X},\tilde{Y}) - \widetilde{N}(\tilde{X},\tilde{m}\tilde{Y}) + \widetilde{N}(\tilde{m}\tilde{X},\tilde{m}\tilde{Y})$ for any two vector fields \tilde{X} and $\tilde{Y} \in \mathscr{L}_0^1(M)$.

THEOREM 2.2. The (1,2) tensor field H defined in M^n satisfies (2.6) $\widetilde{H}(BX, BY) = \widetilde{N}(BX, BY) = BN(X, Y)$ for all $X, Y \in \mathscr{L}_0^1(V)$.

PROOF. Since any vector field tangential to f(V) is not contained in the distribution \tilde{M} , we have for any $X \in \mathscr{L}_0^1(V)$ $\tilde{m}(BX)=0$

which in view of (2.5) and (2.2) yields

$\widetilde{H}(BX, BY) = BN(X, Y).$

Combining the above results we can state:

THEOREM 2.3. An invariant submanifold V^m imbedded in a $\phi(4,2)$ structure manifold such that the distribution \tilde{M} is never tangential to f(V) is an almost complex manifold with induced almost complex structure ϕ . Consequently the dimension of V^m is even. If in the $\phi(4,2)$ structure manifold Haantjes tensor vanishes then the invariant submanifold is complex.

Case 2. The distribution \tilde{M} is always tangential to the invariant submanifold f(V) implies for each $X \in \mathscr{L}_0^1(V)$

 $(2.7) \qquad \qquad \widetilde{m}(BX) = BmX.$

Again we define a (1, 1) tensor field in V^m by

(2.8) $l = -\phi^2$.

247

.

Thus

.

 $lX = -\phi^2 X$ for all $X \in \mathscr{L}_0^1(V)$. Applying B on both sides we get $BlX = -B\phi^2 X$ $= -\phi^2 B X$ (2.9) $BlX = \bar{l}B X$

THEOREM 2.4. (1,1) tensor fields l and m in V^m defined by (2.7) and (2.9) satisfy the following relations

(2.10)
$$l+m=I, lm=ml=0, l^2=l, m^2=m.$$

PROOF. Since

 $\tilde{l}+\tilde{m}=I$ Operating on a vector of the type BX, $X \in \mathscr{L}_0^1(V)$, we get $\tilde{l}BX+\tilde{m}BX=BX$

which in view of (2.9) and (2.7) is equivalent to BlX+BmX=BX

Since B is an isomorphism the above equation yields lX+mX=X.

That is

$$l+m=I$$

Next since

 $\tilde{l}\tilde{m} = \tilde{m}\tilde{l} = 0$

operating Im and m	\tilde{M} on RX $X \subset \mathcal{Q}^{1}(V)$ and using (2.7) and (2.9) we define
operating in and n	$_0$ on DA , $A = 2_0$ (V) and using (2.7) and (2.5) we get
(2.11)	BlmX=0 and $BmlX=0$
which implies	
	lmX=0=mlX
or	
	lm=0, ml=0
Again we have	
i	$\tilde{l}^2 = \tilde{l}$
and	
	$\widetilde{m}^2 = \widetilde{m}$
Operating \tilde{l}^2, \tilde{m}^2 on	BX we get
 , .	$\tilde{l}^2 B X = \tilde{l} B X$
	$Bl^2 X = Bl X$

.

 $l^2 = l$ and $m^2 = m$.

The relation (2.10) shows that l and m are complementary projection operators in V^m given by

$$l=-\phi^2$$
, $m=I+\phi$

we have by virtue of (2.1)

$$B\phi^{4}X = \widetilde{\phi}^{4}BX$$
$$= -\widetilde{\phi}^{2}BX$$
$$= -B\phi^{2}X$$

which yields

 $\phi^4 + \phi^2 = 0.$ Hence ϕ acts as an $\phi(4,2)$ structure on V^m called the induced $\phi(4,2)$ structure on V^m .

THEOREM 2.5. We have $\widetilde{H}(BX, BY) = BH(X, Y)$ (2.12)

PROOF. In view of (2.2) we get $\widetilde{H}(BX, BY) = BN(X, Y) - BN(mX, Y) - BN(X, mY) + BN(mX, mY)$ =BH(X,Y)

Hence the result follows.

In the light of above results we can state:

THEOREM 2.6. An invariant submanifold V^m imbedded in an $\phi(4,2)$ structure manifold M^n in such a way that the distribution \tilde{M} is always tangential to f(V)is an $\phi(4,2)$ structure manifold with induced structure ϕ . If the Haantjes tensor vanishes in M^n then it vanishes in V^m also.

It is well known [5] that the necessary and sufficient condition for L to be integrable is

 $mN(\phi X, \phi Y) + \phi mN(\phi X, Y) + \phi mN(X, \phi Y) = 0.$ (2.13) Next we have

ι.

249

(2.14) $\widetilde{m}\widetilde{N}(\widetilde{\phi}BX,\widetilde{\phi}BY) + \widetilde{\phi}\widetilde{m}\widetilde{N}(\widetilde{\phi}BX,BY) + \widetilde{\phi}\widetilde{m}\widetilde{N}(BX,\widetilde{\phi}BY)$ = $B[mN(\phi X,\phi Y) + \phi mN(\phi X,Y) + \phi mN(X,\phi Y)].$

THEOREM 2.7. If the distribution \tilde{L} is integrable in M^n then the distribution L is integrable in V^m .

PROOF. It follows from (2.13) and (2.14). It is well known [5] that the necessary and sufficient condition for M to be

integrable is

(2.15) $\phi^2 N(X,Y) - \phi^2 N(\phi X,\phi Y) - \phi^3 N(\phi X,Y) - \phi^3 N(X,\phi Y) = 0.$

THEOREM 2.8. If the distribution \tilde{M} is integrable in M^n then the distribution M is integrable in V^m .

PROOF. We have (2.16) $\tilde{\phi}^2 \tilde{N}(BX, BY) - \tilde{\phi}^2 \tilde{N}(\tilde{\phi}BX, \tilde{\phi}BY) - \tilde{\phi}^3 \tilde{N}(\tilde{\phi}BX, BY) - \tilde{\phi}^3 N(BX, \tilde{\phi}BY)$ $= B[\phi^2 N(X, Y) - \phi^2 N(\phi X, \phi Y) - \phi^3 N(\phi X, Y) - \phi^3 N(X, \phi Y).$

From this the result follows.

3. Invariant submanifold of $\phi(4, -2)$ structure manifold

Let M^n be an *n* dimensional differentiable manifold of class C^{∞} and let there be given a tensor field $\tilde{\phi}(\neq 0)$ of type (1,1) and of class C^{∞} such that

as

(3.1)
Let
$$\tilde{l}'$$
 and \tilde{m}' be the projection operators defined
(3.2)
 $\tilde{l}' = \tilde{\phi}^2, \ \tilde{m}' = I - \tilde{\phi}^2$

where I is the identity operator.

Let \tilde{L}' and \tilde{M}' be the complementary distributions corresponding to the projection operators given by (3.2). These operators satisfy the following relations:

(3.3)
$$\widetilde{\phi}\widetilde{l}' = \widetilde{\phi}^3 = \widetilde{l}'\widetilde{\phi}, \quad \widetilde{\phi}\widetilde{m}' = \widetilde{m}'\widetilde{\phi} = \widetilde{\phi} - \widetilde{\phi}^3$$
$$\widetilde{\phi}^2\widetilde{l}' = \widetilde{\phi}^2 = \widetilde{l}', \quad \widetilde{\phi}^2\widetilde{m}' = \widetilde{m}'\widetilde{\phi}^2 = 0.$$

Throughout this section let us assume M^n to be a $\phi(4, -2)$ structure manifold. Let V^m be a C^{∞} *m* dimensional manifold imbedded as a submanifold in a C^{∞} *n*-dimensional manifold M^n . V^m is defined to be an invariant submanifold of M^n if the tangent space $T_p(f(V))$ of f(V) is invariant by the linear mapping $\tilde{\phi}$ at each point *p* of f(V).

Let us assume V^m to be an invariant submanifold of M^n , so that $X \in \mathscr{L}_0^1(V)$ we have

$$(3.4) \qquad \qquad \widetilde{\phi}BX = B\phi X$$

.

where ϕ is (1, 1) tensor field in V^m .

Let us denote \widetilde{N} and N the Nijenhuis tensors in M^n and V^m determined by $\widetilde{\phi}$ and ϕ respectively. It can be easily verified that $\widetilde{N}(BX, BY) = BN(X, Y).$ (3.5)

Particular cases. Let us consider the following two cases for any invariant submanifold V^m in a $\phi(4, -2)$ structure manifold M^n .

Case 1. The distribution \tilde{M}' is never tangential to f(V) i.e., no vector field of the type $\widetilde{m}'\overline{X}$ where \overline{X} is a vector field tangential to f(V) is tangential to f(V). Case 2. The distribution \tilde{M}' is always tangential to f(V).

Let us take case 1. The distribution \tilde{M}' is never tangential to the invariant submanifold f(V) implies any vector field of the type $\widetilde{m}'\overline{X}$ is independent of any vector field of the form BX, $X \in \mathscr{L}_0^1(V)$. Applying ϕ to (3.4) we get

$$(3.6) \qquad \qquad \widetilde{\phi}^2 B X = B \phi^2 X$$

We now show that the vector fields of type $BX, X \in \mathscr{L}_0^1(V)$ are in the distribution \tilde{L}' which is equivalent to showing that m'(BX)=0.

Suppose

250

$m'(BX) \neq 0.$

In view of (3.2) we have

$$\widetilde{m}'(BX) = (I - \widetilde{\phi}^2)(BX)$$
$$= BX - B\phi^2 X$$
$$= B(X - \phi^2 X)$$

This relation shows that $\tilde{m}'(BX)$ is tangential to f(V) which contradicts the hypothesis. Hence

$$\widetilde{m}'(BX) = 0.$$

Using (3.3) in (3.6) we get

$$B\phi^2 X = BX$$

Since B is an isomorphism, hence

(3.7)
$$\phi^2 X = X$$

Consequently the (1,1) tensor field ϕ in V^m , is an almost product structure, called induced almost product structure on the invariant submanifold V^m . Let us define a (1,2) type tensor field H (known as Haantjes tensor) in M^n as

.

.

251

follows

(3.8) $\widetilde{H}(\tilde{X}, \tilde{Y}) \stackrel{\text{def}}{=\!=\!=} \widetilde{N}(\tilde{X}, \tilde{Y}) - \widetilde{N}(\tilde{m}'\tilde{X}, \tilde{Y}) - N(\tilde{X}, \tilde{m}', \tilde{Y}) + \widetilde{N}(\tilde{m}'\tilde{X}, \tilde{m}'\tilde{Y})$ for any two vector fields $X, Y \in \mathscr{L}_0^1(M)$.

It can be easily verified that

(3.9)
$$\widetilde{H}(BX, BY) = BN(X, Y).$$

In the light of the results obtained above, we can state:

THEOREM 3.1. An invariant submanifold V^m imbedded in a $\phi(4, -2)$ structure manifold such that the distribution \tilde{M}' is never tangential to f(V) is equipped with almost product structure. If in the $\phi(4, -2)$ structure manifold Haantjes tensor vanishes then in the invariant submanifold Nijenhuis tensor vanishes.

Case 2. The distribution \widetilde{M}' is always tangential to the invariant submanifold f(V) implies for each $X \in \mathscr{L}_0^1(V)$.

(3.10) $\widetilde{m}'(BX) = Bm'X$ Let us define a (1,1) tensor field in V^m by (3.11) $l' = \phi^2$

Thus

$$l'x = \phi^2 X$$

for all $X \in \mathscr{L}_0^1(V)$. Applying B on both sides we get (3.12) $Bl'X = B\phi^2 X$

 $= \tilde{\phi}^2 B X$ $= \tilde{l} B X$

THEOREM 3.2. The (1, 1) tensor fields l' and m' in V^m defined by (3.10) and (3.12) satisfy the following relations

(3.13) $l'+m'=I, l'm'=m'l'=0, l'^2=l', m'^2=m'.$

PROOF. It follows the pattern of the proof of theorem (2.4). The relation (3.13) shows that l' and m' are complementary projection operators in V^m given by

(3.14)
$$l' = \phi^2, m' = I - \phi^2.$$

We have by virtue of (3.1)

$$B\phi^{4}X = \widetilde{\phi}^{4}BX$$
$$= \widetilde{\phi}^{2}BX$$
$$= B\phi^{2}X$$

which yields $\phi^4 - \phi^2 = 0.$ (3.15)Hence ϕ acts as an $\phi(4, -2)$ structure on V^m called the induced $\phi(4, -2)$ structure on V^m . In this case we can easily verify that $\widetilde{H}(BX, BY) = BH(X, Y)$ (3.16)

THEOREM 3.3. An invariant submanifold V^m imbedded in an $\phi(4, -2)$ structure manifold M'' in such a way that the distribution \tilde{M} is always tangential to f(V) is an $\phi(4, -2)$ structure manifold, with induced structure ϕ . If the Haantjes tensor vanishes in M^n , then it vanishes in V^m also.

It is well known [5] that the necessary and sufficient condition for L' to be integrable is

 $m'N(\phi X, \phi Y) + \phi m'N(\phi X, Y) + \phi m'N(X, \phi Y) = 0.$ (3.17)

THEOREM 3.4. If the distribution \tilde{L} is integrable in M^n then the distribution L is integrable in V^m .

PROOF. We have

(3.18) $\widetilde{m}'\widetilde{N}(\widetilde{\phi}BX,\widetilde{\phi}BY) + \widetilde{\phi}\widetilde{m}'\widetilde{N}(\widetilde{\phi}BX,BY) + \widetilde{\phi}\widetilde{m}'\widetilde{N}(BX,\widetilde{\phi}BY)$ $=B[m'N(\phi X,\phi Y)+\phi m'N(\phi X,Y)+\phi m'N(X,\phi Y)]$ The result follows from (3.17) and (3.18).

It is also known that the necessary and sufficient condition for M'to be integrable is

 $\phi^2 N(X,Y) + \phi^2 N(\phi X,\phi Y) + \phi^3 N(\phi X,Y) + \phi^3 N(X,\phi Y) = 0$ (3.19)Hence we can state:

THEOREM 3.5. If the distribution \tilde{M} is integrable in M^n then the distribution M is integrable in V^m .

PROOF. It follows the pattern of the proof of theorem (2.8).

Banaras Hindu University Varanasi 221005, India

253

•

£

.

.

REFERENCES

- [1] Yano, K.C.S. Houl and Chen, Structures defined by a tensor ϕ of type (1,1) satisfying $\phi^4 \pm \phi^2 = 0$, Tensor N.S. 23 (1972) 81-87.
- [2] Yano, K., Differential geometry on Complex and almost complex spaces, Pergamon Press (1964).
- [3] Clark R.S. and D.S.Geol, Almost tangent structure manifolds, of the second order, Tohoku Math. J.24, 79-92.
- [4] Yano, K. and S.Ishihara, Invariant submanifolds of an almost contact manifold, Ködai Math. Sem. Rep. 21 (1969) 350-367.
- [5) R.S. Mishra and H.B. Pandey, Integrability of certain structures (under print).

!