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ON WEAK CONTINUOUS FUNCTIONS INTO HAUSDORFF SPACES 

By Chung Ki Pahk and Hong Oh Kim 

1. Introduction 

It is a wellknown theorem that every continuous function from a compact space 

Ïnto any Hausdorff space is closed. This property is .a characterizing property of 

functionally compact spaces (See [3] , [5]). This theorem was treated by other 

auther in case of C-compact spaces [4]. 

In the present paper, we generalize this theorem by weakening continuity 

condition or compactness condition, and we have a characterization of absolutely 

closedness. 

2. Generalizations of the theorem 

DEFINITION 2. 1. A function f: X • Y is almost (e-, weakly) continuous ([6] , 
18]) if and only if for every xεX and every φen neighborhood V of f(x) there 

-0 exists an open neighborhood U of x such that f(U)CV-v(fCU一)CV-，f(U)CV-，

respectively). 

It is shown ([5] , [6]) that 

continuity => almost continuity => e-continuity => weak continuity, 
but none of the above implications can be reversed. 

DEFINITION 2.2. A topologicaI space is called C-compact [4] if and only if given 

a closed subset Q of X and an open cover t/ of Q, then there exists a finite 
number of members of t/ whose closures cover Q. 

DEFINITION 2.3. A topologicaI space X is called functionally compact if and only 

if whenever zf is an open fiIter base on X such that nZf= n {U-IUεZf} (=A) , 

then zf is a neighborhood base of A. 

DEFINITION 2.4. A topological space X is called generalized absolutely closed if 
and only if every open cover of X has a finite subfamily whose union is dense in 
X [7]. 

It is shown ([4], [3], [5]) that 

com pactness=>C -com pactness=>f unctional compactness=>generalized absolutely closed' 
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ness, but none of these implications can be reversed. 

We now have the foIlowing generalized theorems. 

THEOREM 2. 5. Every weakly cont쩌μoμS fiμnction 

H ausdorff space z.s closed. 

PROOF. Let f be a weakly continuous function from a compact space X into a 

Hausdorff space Y. Let F be a closed subset of X and let y 풍 f(F). For each f(x) 

of f(F) , by Hausdorffness of Y , there exists an open neighborhood V f(x) of f(x) 

from a compact space into any 

such that y풍V사. Again by weak continuity of f , there exists an open neigh­

borhood U x of x such that f(U x)다강). Since F is a closed subset of a compact 

space X , 
n 

F is compact. Hence FC U U~. for some finite x i ’ s, and 
i=1 ‘ t ‘ 

n n n 
f(F)C( .U.ux) = .U/(Ux)C .uy;;: i=1 ‘ i=1 ’ .';;1' f(x ,). 

η 

Thus Y"，꾀lvkxt) is open neighborhood of y which is disjoint from f(F). Hence 

f(F) is' closed. 

THEOREM 2.6. Every 6-continuous 

H ausdorff space is closed. 

fμnction. from a C-c하;ψαct space into any 
, 

PROOF. Suppose that f: X • Y satisfies the hypothesis. Let Q be a closed subset 

of X and let y 종 f(Q). Since Y is a Hausdorff space, each f(x) E f(Q) has an 

open neighborhood V f(x) such that y 풍 V f(x). Since f is 6-continuous, there exists 

an open neighborhood U x of x such that f(U낀다강)" . Now, since X is C-com-

pact, e 
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n n 
f(Q) cf( U U-:)= U fCU-:) C U V~ 

z=l Xi i=1 Xt z=1 f(Xt)· 

n 
Thus Y ", 섣lV사) is an open neighborhood of y which is disjoint from f(Q). 

Hence f(Q) is closed. 

THEOREM 2.7. Ever.y almost contz"nuoχs func tz"on froηz a functz"onally compact 

space into any Hausdorff space z.s closed. 

PROOF. In the propf of (i)=ì (ii) in Theorem 7 in (5) , any other hypothesis OD 

the space X is used except that X is functionaIly compact. 
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3. GeneraIized absolutely closed spaces 

We have a simiIar theorern on generalized absolutely closed spaces and e-con‘ 

tinuity of a function into any Hausdorff space. 

DEFINITION 3. 1. A function f: X • Y is called almost closed if and only if for­
.0-every regularly closed subset F (i. e. F
U

- =F) of X , f(F) is closed in Y. 

THEOREM 3. 2. Eνery 8-cont껑μous fiμχcNon from a generaUzed absolutely closed 

space into any Hausdorff space is alηtOst closed. 

PROOF. Suppose that f: X • Y satisfies the hypothesis. Let C be a reg띠arly 

closed subset of X and let y 종f(F). For each f(c) ε f(C) , by Hausdorffness of 

Y , there exists an open neighborhood Vf(c) of f(c) such that y 종 V ,Kc)' Again 

by 8-contintinuity of f there exists an open neighborhood U c of c such that f(Uη 

C V f(c)' Since a regularly closed subspace of a generalized absolutely closed space 

is again generaIized absolutely closed ([2]) there exists a finite nurnber of ci 

” -C -(t= 1, 2, ---, %) such that C c= .Ul(Ui n C) n .U UCt , where - C denotes the 

closure operator in the subspace C. Hence 

’‘ n 
f(C) C U fCU-:) C U v::;: 

.=1 Ct i=l f(cj· 

η 

Thus Y'"'" U V:. , is an open neighborhood of y which is disjoint frorn f(C). This ‘ i;;;1. f(c,) 

proves that f(C) is closed in Y. 

DEFINITION 3.3. A Hausdorff space is called absolμtely closed if and only if it 

cannot be properly imbedded in another Hausdorff space, or equivalently every 

open cover of the space has a finite subfamily whose union is dense in the 

space [7] 

COROLLARY 3.4. For a Hausdorff space X the fo!lowing are eqχtναlent. 

(1) X is absolutely closed. 

(2) Eveγ'Y e-con#nuous function on X into any H ausdorff s.양ace is almost closed. 

(3) Every almost cont쩌μous function from X into any H ausdorff space is almost 

closed. 

(4) Every continuous function from X z.nto any Hausdorff space is almost closed. 

PROOF. (1)킹 (2) : Theorem 3. 2. 

(2)=>(3) : This is obvious from the fact that almost continuity implies 8-continuity. 

‘ 
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([5] Le:n:na 6). 

(3)::>(4) : This foIlows from the fact that continuity impIies almost continuity [6]. 

(4)::>(1): lf X is not absolutely closed. then X has an absolute closure KX [7]. 

Since the imbedding mapping i : X ζ κX is continuous and X is a regularly cIosed 

subset of X. by hypothesis X=i(X) is closed in KX. This contradicts to the fact 

that i(X) is dense in KX. Hence X is absolutely closed. 
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