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ON WEAK CONTINUOUS FUNCTIONS INTO HAUSDORFF SPACES

By Chung Ki Pahk and Hong Oh Kim

1. Introduction

It is a wellknown theorem that every continuous function from a compact space
into any Hausdorff space is closed. This property is a characterizing property of
functionally compact spaces (See [3], [5]). This theorem was treated by other
auther in case of C-compact spaces [4].

In the present paper, we generalize this theorem by weakening continuity
condition or compactness condition, and we have a characterization of absolutely
closedness.

2. Generalizations of the theorem

DEFINITION 2.1. A function f: X—=Y 1s almost (6-, weakly) continuous ([6],
[8]) if and only if for every x&X and every open neighborhood V' of f(x) there

exists an open neighborhood U of x such that FaHcv U (ruTHCY T, fFOHCv -,
respectively). '

It is shown ([5], [6]) that

continuity = almost continuity = §-continuity = weak continuity,
but none of the above implications can be reversed.

DEFINITION 2.2. A topological space is called C-compact {4] if and only if given
a closed subset Q of X and an open cover & of Q, then there exists a finite
number of members of ¢ whose closures cover Q.

DEFINITION 2.3. A topological space X is called functionally compact if and only
if whenever % is an open filter base on X such that Z =N{U |(U&Z}(=A4),
then Z is a neighborhood base of A.

DEFINITION 2.4. A topological space X is called gereralized absolutely closed if

and only if every open cover of X has a finite subfamily whose union is dense in
X [7].

It is shown ([4], [3], [5]) that
compactness>C-compactness—>functional compactness=>generalized absolutelv closed-
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ness, but none of these implications can be reversed.

We now have the following generalized theorems.

THEOREM 2.5. Every weakly continuous function from a compact space into any
Hausdorff space is closed.

PROOF. Let f be a weakly continuous function from a compact space X into a
Hausdorff space Y. Let F be a closed subset of X and let y & f(F). For each f(x)

of f(F), by Hausdorffness of ¥, there exists an open neighborhood Vf(x) of f(x)

such that y&V .. £(2)"

borhood U, of x such that f(U )CVf( X Since F' is a closed subset of a compact

Again by weak continuify of f, there exists an open neigh-

space X, F' is compact. Hence FC UlU for some finite x; s, and
7=

f(F)C( U U,) = Uf(Ux‘C U P
; =1 J

Thus Y~ U
f(F) is Closed.

f( 3 is open neighborhood of y which is disjoint from f(F#). Hence

THEOREM 2.6. Every O~-continuous function from a C-csstbact space into any
Hausdorff space is closed. ' "

PROOQOF. Suppose that f : X—Y satisfies the hypothesis. Let Q be a closed subset
of X and let y & f(Q). Since Y is a Hausdorff space, each f(x) € f(Q) has an

open neighborhood Vf( ) such that y&V .. ()" Since f 1s -continuous, there exists.
an open neighborhood U, of x such that f(U YV, £(2)* Now, since X is C-com-

pact, Q C _U1 U ; for some finite x,s. Hence
1=

FQCAYUN=UFUDC UV

Thus ¥ ~ U1V e is an open neighborhood of y which is disjoint from f(Q).
} — i

Hence f(Q) is closed.

THEOREM 2.7. FEwvery almost continuous function from a funciionally compact
space into any Hausdorff space is closed.

PROOF. In the propf of (1)=>@i) in Theorem 7 in (5], any other hypothesis on
the space X is used except that X is functionally compact.
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3. Generalized absolutely closed spaces

We have a similar theorem on generalized absolutely closed spaces and 6-con-
tinuity of a function into any Hausdorff space.

DEFINITION 3.1. A function f: X—Y is called almost closed if and only if for
every regularly closed subset F (i, e. FO_:F) of X, f(F) is closed in Y.

THEOREM 3.2, Every O-continuous function from a generalized absolutely closed
space nto any Hausdorff space is almost closed.

PROOF. Suppose that f: X-—Y satisfies the hypothesis. Let C be a regularly
closed subset of X and let y & f(&). For each f(¢c) € f(C), by Hausdorffness of

Y, there exists an open neighborhood Viey of f(¢) such that y &V 6" Again
by 0-contintinuity of f there exists an open neighborhood U of ¢ such that f(U ;)
- V;(c). Since a regularly closed subspace of a generalized absolutely closed space

Is again generalized absolutely closed ([2]) there exists a finite number of c;

n

(=1, 2, =, n) such that CC U (U;N €)™ N U U, where —C denotes the
1= 2= J

closure operator in the subspace C. Hence

fOCcUfU)HC Uy .,
i=1 d i=1 i

Thus ¥ ',..._,.‘le VEC) is an open neighborhood of y which is disjoint from f(C). This.
1= / '

proves that f(C) is closed in Y.

DEFINITION 3.3. A Hausdorff space is called absolutely closed 1if and only if it
cannot be properly imbedded in another Hausdorff space, or equivalently every

open cover of the space has a finite subfamily whose union is dense in the:
space (7]

COROLLARY 3.4, For a Hausdorff space X the following are equivalent.
(1) X is absolutely closed.
(2) Every G-continuous function on X into any Hausdorff space is almost closed.

(3) Every almost continuous function from X into any Hausdorff space is almost
closed.

(4) Every contimnuous function from X into any Hausdorff space is almost closed.

PROOF. (1)=>(2) : Theorem 3. 2.
(2)=>(3) : This is obvious from the fact that almost continuity implies §-continuity-



242 - Pal '
Chung Ki Pahk and Hong Oh Kim

([5] Lemma 6).

(3)=>(4) : This follows from the fact that continuity implies almost continuity [6].
(4)>(1) ¢ If X is not absolutely closed, then X has an absolute closure «X [7].
Since the imbedding mapping 7 : X C kX is continuous and X is a regularly closed
subset of X, by hypothesis X=:(X) is closed in #X. This contradicts to the fact
that /(X) is dense in £X. Hence X is absolutely closed.
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