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AN EQUIVALENCE RELATION ON THE LATTICE OF
TOPOLOGIES ON A SET

By Norman Levine

1. Introduction

Kelley [1, Chapter 2] notes that two topologies on a set X are equal iff conver-
gent nets and their limit points correspond in both topologies.

In this paper we consider the weaker condition that convergent nets but not
necessarily limit points correspond in both topologies. This leads to an equivalence
relation for topologies on X different from -equality.

In this section we develop an equivalent condition in terms of topological struc-

tures which enables us to study the invariance of several topological pmpertles
Equivalence of topologies is formalized in the following

DEFINITION 1.1. Topologies .~ and .7 * on X are equivalent(written J =9 *)
iff every .9 -convergent net in X is .9 *-convergent and conversely.

That equivalent topologies need not be equal is shown in

EXAMPLE 1.2, Let X=1{a,8}, 9 =1{6. X}, % =10, {a}, X}, % =1{p, {8}, X} and
= {p, {a}, {8}, X}. It is easy to see that ﬁ}'__ﬂ;_jg'éﬂ.

THEQREM 1.3. Let 9 and 7 * be topologies on X, I being indiscrete. Then

T *=9 iff there exists a point x in X such that X is the only 7 *-open set con-
taining x. |

The proof of this theorem and several others in this paper follows from the
following lemma whose proof is omitted.

LEMMA 1.4. Let D#¢ and = the relation on D defined by d,=d, for dll d,,d,
in D. Then (D, =) is a directed set. We shall call = the trivial order on D.

We continue now with the proof of Theorem 1. 3.

Sufficiency. Suppose X is the only .9 *-open set containing % Then every net

in X is 9 *-convergent (to x). ‘But every net in X is 7 -convergent (to every
point of X) and hence .7 *=.97".
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Necessity. Let (D, =) be the directed set in Lemma 1.4, with D=X and let
; : D—X be the identity net. Since the net 7/ : D—X is .7 -convergent and .9 *=
9. it follows that 7 : D—X is .9 *¥-convergent to some point x in X. Let x&O0~
.9 ¥ : then the net 7 : D—X is eventually in O*. But X=/[D] CO* since = is
the trivial order on D. Thus X is the only .7 *-open set containing x.

A similar argument proves the next result which uncovers the topological nature
of our equivalence relation. This formulation is useful in the study of the invar-
iance of many topological properties.

THEOREM 1.5. Let .5 and 7 * be topologies on X with closure operators c and
c* and inlerior operators Int and Int* respectively. The following are equivalent:
(1) *=9 2 N {cd, tacdt=¢ iff N{c*A, : a&E4} =0 for all collections {4,
a4t 3) X=U{Intd  :acdl iff X=U {Int*Aa : €4} for all collections {A,
r a4},

PROOF. Ve show only the equivalence of (1) and (2), the equivalence of (2)
and (3) being obvious. |

Suppose (1) holds and let {4, :a&4} be a family of sets for which N{cA4, :
acd}#p. We will show that N{c*4, @ a€4#4. Let x&€N{c4, : a4} ; then N
NA,#¢ tor all a4 and all NeEn(x, 7). Let (D,=) be the directed set in
Lemma 1.4 with D=4 and let =" be the usual ordering on 7(x, 7 )(N,Z'N , iff
N,CN,). Let D*=DXn(x, .9 ) and let =* be the product ordering. Let S : D¥—
X as follows: S(a, N)ENNA,. It is clear that S is 7 -convergent to x. Since
7 *=, there exists a point y in X such that S is .9 *-convergent to y. We
complete the proof by showing that yec*4 , for all &4 or that N*NA_ #¢ for
all a4 and all N*&n(y, 7 *). Fix a*€4 and N*&n(y, 7 %). Since S is even-
tually in N*, there exists a pair (o, N)ED* such that S(53, M)&eN* when (5, M)
=*(x, N). In particular, {(a*, N)=*(a,N) and hence S(a*,N)EN¥*. But
S(a*, N)ENNA . and hence N*ﬂAa*#qﬁ.

Now, suppose (2) holds. Let S: D—X be a net in X which 9 -converges to
xsiletar={A : S i1s frequently in A}. Then xE(\{cA : A€z}. If x&&cA, then S is
eventually in €cA and hence not frequently in A. By (2), there exists a point
y1in N {c*A: A&c}. We show now that S is .7 *-convergent to y. Let y&0*&
7 * and suppose that S is not eventually in O*. Then S is frequently in ZO¥*

and hence 0*<cr. Thus y&c*F0*¥=%0* and yg0O¥*, a contradiction.

2. Invariance of topological properties

’

In this section we investigate the invariance of several topological properties.
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First we show that equivalence is the same as equality for T';-spaces.

DEFINITION 2.1. For .9 a topology on X, we denote by [Z] the set of alk
topologies .7 * such that I =9 *.

THEOREM 2.2. If 9 is a T,~topology on X, then [T }={T }.

PROOF. Let J*=5 :we show that J *=.7". Firstly, 5 * is a T ~topology.

To see this let x#y. Then c({x} )Nc({y})=0¢ since 7~ is a T';-topology and hence
by (2) of Theorem 1.5, c*({z})Nc*({y})=¢. Thus, J * is a T,~topology. Let
re0&.7 ; then X=0U% {x} and by (3) of Theorem 1.5 it follows that X=Int*O

UInt*% {x}. Hence ¥*&Int*OCO and it follows that  C.7 *. By symmetry, we:
get 7 *C.7 .

The converse of Theorem 2.2 is false as seen in

EXAMPLE 2.3. Let X={a,8,¢} and I ={9, {a}, {a, b}, {a.c},X}. (X, ) is not a.
T,-space, but [ ]={7}. Suppose J *=7 ; we must show that . *=9". Con-
sider the sequence S, : b,¢,b,¢,--. This sequence is not 9 ~convergent and hence

~ is not .9 *-convergent. Thus .7 *#{¢, X} ; by Theorem 1.3, each point of X
has a .7 *-neighborhood other than X. Next consider the sequence S,a,b,a,0, .
This sequence is .7 -convergent to & and hence is .9 *-convergent to some point

x in X. Let O* be the smallest 9 *-open set containing x. Since O*#X and S, is
eventually in O*, it follows that O*={a,b}. Let S;:a,ca,c,-. Repeating the
above argument, there exists a point ¥ in X such that {ag,c} is the smallest . *

-open set containing y. Since {a} = {a, b} N {a, c} €7 *, it follows that x=5& and y=c..
Thus 7 *=9".

T, 1s a necessary condition for equivalence to imply equality as shown in

THEOREM 2.4, Let [F) =-{.?" }. Then J is a Ty-topology.

PROOF. Suppose that .7~ is not a T ,-topology; there exist then points ¢#% in
X such that ¢({a})=c({d}). Let T *=97 V{p, {8}, X}. It is clear that .9 C.9 *,
J #7 *. It suffices to show that F =7 *. Let S: D—X be a .7 -convergent

net with limit point x., If x4, then S is Z *-convergent to x. If x=5& then S
is .7 *-convergent to a.

The converse of Theorem 2.4 is false as shown in example 1.2 and T, is not
invariant relative to equivalence. Any separation property stronger than T, is

invariant (Theorem 2.2). We now investigate the invariance of several other
topological properties the definitions of which can be found in [1]. Note that
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regluarity is not assumed in our definition of paracompactness.

THEOREM 2.5. The following properties are invariant under equivalence: (1)
compactness (2) sequential compactness (3) countable compaciness (4) connectedness
(5) Lindelof (6) normality (7) collectionwise normality (8) full normality (9) para-

compactness (10) countable paracompactness (11) metacompactness (12) every open
cover 1S even.

PROOF. The invariance of properties (1) to (3) follows directly from their
~ equivalent formulations in terms of nets. The Invariance of (4) is a corollary to
the following

LEMMA 2.6, Let 7 *=9 on X and ACX. Then A is 7 ~clopen iff A is
T *-~clopen.

PROOF. A is .7 -clopen iff cANCEF A=¢ iff c*ANC*EF A=¢ iff A is T *-clopen.
(See (2) of Theorem 1.5.) ~ |

To prove (5), let . be Lindelof and I =5 * lf X=U{0*, . a4} where
O* &7 * for all a, then by (3) of Theorem 1.5, X=U {IntO* : a&4}, Int being

the S -interior operator. Thus X=U {IntO%*, :7=1,+,#,} and hence X=U {0*,
11=1,2, «-}.

To prove (6), let . be normal and 7 *=9%. Let E*N\F*=¢, E* and F¥*
being . *-closed. Then c*E*(N\c*F*=¢ and by (2) of Theorem 1.5, cE*N\cF*=
¢. Since .9 1is normal, there exist 0,,0, in 7 such that cE*CO,, cF*CO0, and
0,N0,=¢. Thus cE*NZ0,=¢ and cF*N% 0,=¢. Using (2) of Theorem 1.5 again,
C*E*Nc*E0,=¢ and c*F*Nc*¢0,=¢. Thus E*CFc*¢0,=Int*0, and F*C%c*
' 74 0,=Int*0,. Hence E* and F* are separated by disjoint, 7 *-open sets and
7 * is normal.

Before continuing, we inject the following

—

LEMMA 2.7. Let 7 =7 *and {A, . a€4} a T -locally finite (discrete) family
of sets in X. Then {A,:aed} is T *locally finite (discrete).

PROOF. For each x in X, there exists an O,&€5 such that *€0, and {a: O,
NA, #¢} is finite (is ¢ or a singleton). Thus X=U {0, :x&X} and by (3) of
Theorem 1.5, X=U{Int*0, : x&X}. That {4, :a&4d} is J *-locally {initc (dis-

crete) follows from the fact that Int*O CO..

We now prove that (7) is invariant. Let .7 be collectionwise normal aad 7 *
=7 . Suppose then that {E* :a&d} is a J *-discrete family of 7 *-closed
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sets. Then {E* :a&d} is a J -discrete family of sets and hence {cE*, @ acd}

is also a .7 -discrete family of closed sets. Thus there exists a disjoint family of
7 ~open sets O, such that cE* NZ0,=¢ for each a. By (2) of- Theorem 1.5, it

follows that c*E* Nc*&0,=¢ and hence £* ,C¢c*?’0,=Int*0,. Clearly {Int*0O,

: a4} is a disjoint family of .9 *-open sets.

Of the remaining properties, we prove only (9) and (12).

To show (9), let F =% and suppose . is paracompact. Let X=U{0" '«
€4, 0¥ &7 * Then by (3) of Theorem 1.5, X=U{IntO* ! a&d} and Int
O* €5 . There exists then a J -open locally finite refinement 0, :rel) of
{Int O* a&4}. By Lemma 2.7 {Int*OT cy&l} is a F *-open locally finite
.refinement of {Or : v&I'} and hence of {0*,: a4} also. Thus .2 * is paracom-
pact.

Finally, let  =.9"* and suppose .9 has property (12) ; let O* :a&dt be a
7 *-open cover of X. By (3) of Theorem 1.5 {IntO¥ :a&4} is a I ~-open
cover of X, and hence there exists a .7 X.9 -open set V containing the diagonal
in XXX such that {V[x] : x&X} refines {IntO* , . e&4}. For each x&X, there
exists an O €5 such that (x, x)E0, X0 CV. Let W*=U {Int*OxXInt*Ox e
X} i then W* is a . *X.9 *-open set in XXX which contains the diagonal and
W*lx] : x€X} refines {O¥ . - @E4} as the reader can easily verify.

The next result enumerates topological properties which are not invariant rela-
tive to equivalence and for which we give counterexamples.

THEORM 2.8. The following properties are not invariant wunder equivalence: (1)
R (x€0€7" implies that c{x} CO) (2) T, (3) regularity (4) complete regularity
(5) perfect normality (6) complete normality (7) second axiom of countability (8) se-

- parability (9) local comnecteness

PROOF. We refer to example 1.2 for (1)—(5).

The following example takes care of (7H)—(9).

EXAMPLE 2.9. Let X be an uncountable set and 9 = {¢, X}. Let x5y in X
and define 7 *={0* : O*=X or {x,y}CZ0* or x&€0%, y&£O0* and €O* is finite}.
Since X is the only .9 *-open set containing y, it follows from Theorem 1.3 that
I *=9 . J has properties (7)—(9), but .7 * has none of the properties.

If X={a,b,c,d}, I ={9,X}, T *={¢, {a}, {a,b}, {a,c}, {a,b,c}, X}, then I
=97 * (Theorem 1.3), .7 is completely normal, but .7 * is not.
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THEOREM 2.10. Let . *=9 on X and suppose both F and T * are locally
connected. If ACX, then A is a F *~component iff A is a T —component.

PROOF, Let A be a .9 -component of X. Then A is .7 -clopen and hence A is.
7 *~clopen by Lemma 2.6. We will show in Theorem 3.2 that AN.9 =ANS *.
Since A is AN.9 -connected, it folows from Theorem 2.5 that A is AN *-con-

nected. But clopen and connected implies component

3. Properties of equivalent topologies

In this section we further investigate the nature of equivalence. Kirst we note:

that homeomorphic topologies need not be equivalent.

EXAMPLE 3.1. Let X={a,b,c} and .9 ={@, {a}, {b,c}, X}, T *={0, {b}, {a.c}, X}.
7 and 7 * are homeomorphic, but the sequence S(2z)=¢ and SQ@u+1)=c is
7 *-convergent, but not .7 -convergent.

Secondly we note that subspace topologies generated by equivalent topologies
need not be equivalent—in example 2.9, .9 =9 %, but ¥ {y} N7 £% {y} T *.

Closed subspaces, products and coproducts are more tractable as shown by the

following theorems.

THEOREM 3.2, Iet T *=9 on Xand YCX, Y boz.‘ki T *—closed and 9 ~closed.
Then Y. *=Y .9 |

PROOF. Let S: D—Y be YN.9 ~convergent. Then S : D—X is .7 -convergent
and hence .7 *-convergent. Since S[DICY and Y is .7 *-closed, S:D—Y is
Y .9 *-convergent. |

THEOREM 3.3. Let (X, T )=x{(X_, 5 ) :a&d} and (X, T *)=X{(X,, T *):
acdt. Then T =T % iff I =7 *, for all acd (X #¢ for all a€4 and
AP,

PROCF. Let 9 =9 * for each &4 and suppose that S : D—X is J -conver-
gent. Then P c:rDS : D—X ” is .7 -convergent, P, denoting the a-projection, and
hence J * -convergent for each a&4. It follows then that S : D—X is .9 *-con-

}

vergent.
Conversely, let I =9 * and fix f&4. We show that 9 ﬁzf *ﬁ slet S:D—

X, be e g-convergent. For a7f, choose ¥ &X  and define T : D—X as follows:
P,(T(d))=5(d) and P (T(d))=x, for a#p. Then T :D—-X is 9 -convergent

and hence also .7 *-convergent. It follows that S=P T is .7 *B—COIWergent.
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THEOREM 3. 4., Lel (.X, f)::z {(Xa" fa) . CEEA} and (X, f*)zz {(Xa,
T*)iaedy, (X, a4} being a disjoinl family of sets. Then T =7 * iff
T =T ¥ for all a&A

PROCF. If 7 =59% then I =9 * for each o by Theorem 3.2 since each
X, is both 9 -closed and 9 *-closed and 9 =X NS, J* =X NI * The
converse follows from the fact that X _is both J -open and .7 *-open. We omit
the details.

 The following theorems deal with the equivalence class determined by a topo-
logy. We show that R,-topologies are the smallest in their equivalence class and

that a topology is T, if it is maximal in its class.

THEOREM 3.5. Let 9 be an Ry-topology and T =7 *. Then I CT *.

PROOF. Let x€0&€.7 . Then c(x)CO and hence c(x)NZ0=¢d. By (2) of
Theorem 1.5, c*(x)Nc*E0=¢ and x€Fc*FO0=Int*0CO. Thus 0.7 *.

THEOREM 3.6. If F is maximal in [T), then F is a T,-topology.

See the proof of Theorem 2,4. The converse of Theorem 3.6 fails as shown in

EXAMPLE 3.7. Let X be the reals and .9~ ={0:0=¢ or O=X or O=(—00,%)
for some *&X} :let I *=9"U{(—~o0,0]}. Then I isa T -topology, I C.I ¥,

I #T ¥, I =7 * as the reader can verify.
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