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SOME GENERALISATIONS OF METACOMPACT SPACES
By M.K. Singal and Pushpa Jain

1. Introduction

As defined by Arens and Dugundji [2], a space X is called metacompact if
each open covering of X admits of a point-finite open refinement. The purpose
of the present paper 1s to study some generalisations of this concept, namely
Ni-metacompactness and almost M-metacompactness, M being an infinite cardinal.
The first one of these is a generalisation of metacompactness as also that of
M-paracompactness Introduced by Morita [15]. The latter one appears as a
generalization of almost IMM-paracompactness introduced by Singal and Arya [18].

Let M be an Infinite cardinal. A space X 1s called M-metacompact if every

open covering of X of cardinality <t admits a point finite open refinement.
If Z and 77 are collections of subsets of X such that each member of #  is

contained in some member of Z, then 7 is called a weak refinement of Z. If
further U{U : U} =U{V : VE?"}, then 7" is called a refinement of Z. A
Spacé X 1s called almost M-metacompact if, for every open covering of X of
cardinality < there is a point-finite open weak refinement whose closures cover
X. Clearly, every almost M-paracompact as also every IN-metacompact space is
almost Ot-metacompact. A space 1s metacompact (almost metacompact) if it is
M-metacompact (almost M-metacompact) for every infinite cardinal N. For a
topological space X with an open base of cardinality <, T-metacompactness.
(almost Pi-metacompactness) is equivalent to metacompactness (almost metacom-
pactness). Since for a screenable space (that is, a space in which every open
covering has a ¢-mutually disjoint open refinement) as well as for a metalLindelof
space (that is, a space in which every open covering has a point-countable
open refinement) metacompactness 1s equivalent to countable metacompactness
[5], it follows that for such spaces metacompactness is equivalent to ¥i-metacom-
nactness for any infinite cardinal .

In section 2 we obtain some new results for countable metacompactness. Sections.
3,4 and 5 deal with I-metacompactness and In the last section almost 2i-meta-

compactness has been discussed.
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Throughout X will denote a topological space and ! will denote an infinite
cardinal. NV denotes the set of natural numbers. For any point set 4, |A] will

denote the cardinality of .

2. Countably metacompact spaces
For our first theorem we need the following result due to Hayashi {6] which

characterizes countably metacompact spaces.

THEOREM 2.1. [Hayvashi, 6]. A space X is countably metacompact if and only if
for every decreasing sequence {F} of closed sels with emply intersection there is

a sequence {G;} of open sets with empty intersection such that G,OF. for each .

THEOREM 2.2. Every closed, continuous image of a countably metacompact space

X s countably metacompact.

PROOF. Let f be a closed continuous mapping of a countably metacompact space
X onto a space Y. Let {F;]} be a decreasing sequence of closed subsets of ¥ with

. : . ] ] —1 . .
empty intersection. Then, since f is continuous, . {f "(F,)} 1is a decreasing
sequence of closed sets with empty intersection. Since X 1s countably metacompact,

there is a sequence {G;} of open subsets of X such that _ﬂle:gzﬁ and f_lCFi)C
| i

G, for all 2. Now, if (Gé)o be the union of all sets f_l( y) which are contained 1n
G, then (G,), 1s an open inverse set because f is closed and continuous. Also,

FiFHC(6),CG; and _iﬁl (G),=¢. Then F,=f((G,),) forall i. Also E]lf((Gi)O)
¢, for if Y& F((G,)y for all i, then F '(»)C(G,), for all i, since (G,), is an

inverse set. Hence f_l(y)CGz- for all 7, that is, f_l( PC F])le. and thus EICGQO
#@, which is a contradiction. Also, since f is closed and tc;:um::imlcuuS,. f((zéi)o) is
an open set. Thus {f((G,),)} is a sequence of open sets with empty intersection
such that F.Cf((G,),) for all i. Hence Y is countably metacompact in view of
Theorem 2. 1.

THEOREM 2.3. Disjoint topological sum of countably metacompact spaces is count-

ably metacompact.

PROOF. Let {X  :«a&A} be a disjoint family of countably metacompact spaces.

Let X denote the disjoint topological sum of this family.
Let Z={U, : n=N} be a countable open covering of X. For each a€4, {U, N

X, :n&N} 1s a countable open covering of X,. Let 77 be a point-finite open
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refinement of {UﬂﬂXa : =N}, Since the family {X ! a&4} is a disjoint family

and each 77 is point-finite, we conclude that U 77 isa point-finite open re-

acA
finement of Z’. Hence X is countably metacompact.

(4

THEOREM 2.4. If {F_ :a&€A} is a locally fintte closed covering of X such that
each F, is countably metacompact, then X is countably metacombact.

PROOF. For each o&A, let- X a, be a homeomorphic copy of F . and let fa
denote 2 homeomorphism from X to F . Let X* denote the disjoint topological
sum of the X ’s. Then X% is countably metacompact in view of Theorem 2. 3.

Define the natural map f: X*—=X as f(x*)=f, (2*) 1if 2*&€X . It can be easily

verified that f is a closed, continuous mapping. Hence X is countably metacom-
pact by Theorem 2.2,

Hodel [10], Singal and Arya ([19], [20i, [21]) have obtained several sum
theorems for a topological property & which is closed hereditary and which
satisfies the following property: .

If {F_ . a&4} is a locally finite closed covering of X such that each F, has

the property ¢, then X has the property .’

Thus in view of Theorem 2.4 and the fact that every closed subset of a
countably metacompact space is countably metacompact, we obtain the following
sum theorems.

THEOREM 2.5. If 77 is arn order locally finite open covering of X such that
the closure of each member of 77 is countably metacompact, then X is countably
metacompact.

COROLLARY 2. 1. If 7 be a o-locally finite open covering of X such that the cl osure
of each member of 7 is countably metacompact, then X is countably metacompact.

THEOREM 2.6. If X is regular and 7 is an order locally finite open covering
of X such that for each V&7, V is countably metacompact and Fr(V) is compact,

then X is countably metacompact.

COROLLARY 2.2. If X is regular and 7" is a o-locally finite open covering of
X such that for each VEZ~, V is countably melacompact and Fr(V ) is compact, then

X is countably metacompact.

THEOREM 2.7. Let 7" be a c-locally finite elementary covering of X such thatf
cach VEZ is countably metacompact, Then X is countably metacompact.
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THEOREM 2.8. Let 77 be a locally finite open covering of a regular space X
such that for each VEZ", V is countably metacompact and IFr(V) is Lindelof, then X
is countably metacompact.

THEOREM 2.9. Let 77 be a normal open covering of a normal space X such that
cach member of 77 is countably metacompact. Then X 1s countably metacompact.

PROOF. By Theorem 1.2 in [15], 7 admits oi a locally finite (and hence
point-finite) open refinement. Therefore the result follows in view of Remark 3. 3.

THEOREM 2.10. Let 77 be a o-locally finite open covering of a normal space X

such that each V&7~ is an F -subset of X. Then X is countably wmetacompact if
cach VE7~ is countably metacompact.

PROOF. The theorem is an casy consequence of Theorem 2.7 and the fact that

every open F -subset of a.normal space is elementary.

THECOREM 2.11. Every space which contains a proper non-empty regularly closed set
s countably metacompact if and only if every regularly closed subset of X is count-

ably metacompact.

COROLLARY 2.3. A weakly regular space X is countably metacompact if and only
if every proper regularly closed subset of X is countably metacompact.

COROLLARY 2.4. A semi-regular space X is countably mela compact if and
only if every proper regularly closed subset of X is countably metacompact.

3. Characterizations and conditions implying 9t-metacompactness

THEOREM 3.1. A space X 1s M-metacompact if and only if it is countably meta-
compact and each oten covering of X of cardinality <t adnmuts of a o-point-finile

open refinemeit.

PROOF. The ‘only if’ part is obvious. We shall prove the ‘if’ part. Let Z =
{U_ :ac€4} we any open covering of X with |4|<)R. By hypothesis there exists

a o-point-finite open refinement 7 = _Ulyi of Z' where each 77,={V4 ;. €4}
1= ’

is a point finite collection. For each z'éN, let VZ:U{VW: : BE4;t. Then {V, ¢
f=N} 1s a countable open covering of X and since X is countably metacompact,
there exists a point-finite open refinement {Wz. :tEN} of {Vz. :7&N} such that
W,V for each i Then, {W,NV,,:pE4, iEN} is a point-finite open refine-
ment of Z and hence X is M-metacompact.
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Arens and Dugundji [2] proved that a T space is compact if and only if it is

countably compact and metacompact. With essentially the same argument we
obtain the following.

THEOREM 3.2. A T’y :pace X is M-compact if and only if it is countably compact
and M-metacompact.

COROLLARY 3.1. A T, space X is M-compact if and only if it is countably compact
and M-paracompact. |

REMARK 3.1. Corollary 2.1 was proved by Morita [15] with the assumption
that X is normal.

THEOREM 3. 3. Every collectionwise normal N-metacompact space is M-paracompact.

PROOF. Follows easily from Theorem 1 of Michael [14].

COROLLARY 3.2. Ina collectionwise normal space, R-metacompactness is equivalent
to M-paraconmpactness.

DEFINITION 3.1. [Krajewski, 14] A space X is said to be M-expandable if for
every locally finite collection {# @ «a&A} of subsets of X with |AI<2 there is

a locally finite collection of open subsets {Ga, & A} such that F aCGa, for every
acA. X is expandable if it is P-expandable for every infinite cardinal 9.

IIt is clear that X is M-expandable if and only if for every locally finite col-
lection of closed subsets {F :a&A} with [A[<IN there exists a locally finite

collection of open subsets {G, : &4} such that F, CG, for each a&A.

It has been proved by Krajewski [14] that collectionwise normality in Theorem
3.2 can be replaced by Pt-expandability. In fact he has proved the following:

THEOREM 3.4. X is M-paracompact if and only if X is W-metacompact and M-
expandable.

DEFINITION 3.2. [22] A space X is sald to be M-subparacompact if every open
covering of X of cardinality <t admits of a ¢-discrete closed refinement.

LEMMA 3.1. Let X be a topological space in which every closed set is a Gy-set

(that is a countable intersection of open sets). T hen every point-finite open covering
of X has a o-discrete closed refinement.

Thus, we have the following:

THEOREM 3.5. Every Ii-metacompact space in which every closed set is a Gy-set

s M-suhbgracompact.
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THEOREM 3.6. A necessary condition for a space X to be M-metacompact is that
Jor every locally finite family of closed sets {F ,.a&SA} with |A|<IN there exists

a point-finite family of open sets (G, . x&A} such that FaCGa, for every a& A.

PROOF. Let # ={F  :a&A} be a locally finite family of closed subsets of X

with |AI<I. Let [" be the collection of all finite subsets of A. Then [{I'|<IN.
For each r&rl', let

Vr=X- U{F, : oy},
Then 7 ={V . y&/['} 1s an open cover of X of cardinality <t such that each

member of 7 intersects only finitely many members of % . Since X is M-meta-
compact, there is a point-finite open refinement # = Wy ged} of 77. For each

oA, let
Ga=St(Fa, V)zU{WﬁEV : WﬁﬂFa;égé}.

Clearly, {G , - a&4} is a collection of open sﬁbsets of X such that F CG, for
each a=/4. We shall prove that {G @ a&A4} 1s point-finite. Let x&X. Then x
belongs to only finitely many members of #7. Also x€G, if and only if xEW 4
and WNF, 7¢ for some f&E4. But W, being a subset of some V., meets only
finitely many F_’s. Thus {G,:a& A} is point-finite.

DEFINITION 3.3. [Andenaes, 1]. A cover Z of X is called point-finite ouiside
closed sets if for each closed subset F of X and each point x&X—F there exist
at most finitely many members of Z which contain x and intersect F.

REMARK 3.2. A point-finite cover is obviously point-finite outside closed sets.

The following lemma has been proved in.[1].

LEMMA 3.2. Let Z be an open cover of X which is point-finite outside closed sets.
Then Z has a point-finite subcover.

In view of Lemma 3.2 and Remark 3.2, we obtain the following

THEOREM 3.7. A space X is M-metacompact if and only tf every open covering
of X of cardinality <N has an open refinement which ts point-finite ouiside closed

seLs.

THEOREM 3.8. Let {ch S A} be a family of subsets of X such that {Int Ga:
oA} forms a point-finite open covering of X. If each G, is M-metacompact, ther

X s M-metacompact.
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PROOF. Let {U g BE4} be any open covering of X with |4|<<It. Then, for
each ac4, {U ﬁﬂGa,': BE4} is a relatively open covering of G, of cardinality
<M. Since G, is M-metacompact, there exists a point-finite (in G,) open (in G )
covering {VTﬂG o 7€} of G, which refines {U 5ﬂG a': B8&4} and each Vr 1S.
open in X. Consider the family {V?,ﬂInt G oy - re=[’ - acA}. This is a point-
finite open refinement of {U 3 B4} and hence X is f-metacompact.

COROLLARY 3.3. If G, oA} be a family of subsels of X sucht hat {IntGa,:

oA} is a point-finite covering of X, then X is wmetacompact (countably metacom-

bact) if each G, is metacompact (countably metacompact).

THEOREM 3.9. If SCX where S= UA S, and each S, 15 open in S and w{Sﬂ,:: '
o=

aE A} is point-finite (in S), then S is M-metacompact if each S, is M-metacompact.

PROOF. Let {SNOU X B&E4} be any relatively open covering of S with |4]<.
Then for each €A, {S NU g B4} is a relatively open covering of S of car-
dinality <IR%. Since Sa 1s P-metacompact, there exists a point-finite (in S a)family
Va,z{Va, ?,ZTEF . of open subsets of S, which refines {S,NU,: BEL} and
hence also {U ﬁﬂS : 54}, Now consider 7 ={V o7 crel’ ,, acA4}. Then, each
V is an open subset of S. Also 777 is a point-finite open (in S) refinement of

.,y

(SU, : €4} and thus S is Di-metacompact.

COROLLARY 3.4. If each member of a point-finite open covering of a space is
M-metacompact, then the space is M-metacompact.

COROLLARY 3.5. Disjoint topological sum of M-metacompact spaces is W-metacom-
pact.

REMARK 3.3. The results of Corollary 3.4 and of Theorem 3.9 remain valid if
the word “M-metacompact’” be replaced by ‘metacompact’ or by ‘countably
metacompact’ .

THEOREM 3.10. Let X=AUB where A and B are closed subsels of X. Then
X s M-metagcompact if A and B are both M-metacompact.

PROOT. Let Z={U, : &4} be an open covering of X of cardinality <.
Then W, NA:as4} is an opén (in A) covering of A of cardinality <¥:. Since
A 1s Yi-metacompact there exists a point-finite open (in A) collection {V, a4}
covering A such that Va,CUa,ﬂA for all a&=A. For a4, let
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U/ =UNX—-(A-V )]

and let Z*={U *!a&4}. Now the collection Z* is an open cover of X such
that U _*CU , for all a& /4 and every point of A belongs to at most finitely many
members of Z*.

Again, {U,*NB:a&4} is anopen (in B) covering of B of cardinalitjr <.
Therefore there exist a point-finite open (in B) collection {W  : a& A}l covering B
such that W _CU _*NB for all a&A. For each a&4, let

UxX»=U_"NX~(B-W,)]
and let Z**={U _**:a&A}. Now the collection Z** is a point-finite open refine-
ment of Z. Hence X is M-metacompact.

As a consequence of the above theorem we obtain following interesting results.

THEOREM 3. 11. Every space which contains a proper non-empty regularly closed
set s M-metacompact if and only if every regularly closed subset of X is M-meia-

compact,

PROOF. Since every regularly closed set is closed, therefore the ‘only if’ part
is obvious. We shall now prove the ‘if’ part. Let U be any proper non-null
regularly closed subset of X. Therefore Cl Int UCU. Let Int U=V. Then V is
a non-empty Opén subset of X. Since V is open and VN X~—ClV=¢, therefore
VNCIX —Cl V)=¢. This shows that CI(X—Cl V) is a proper regularly closed subset
of X. By hypothesis, CI(X—-Cl V) and Cl V are M-metacompact. Also CI(X~Cl V)
UCl V=X. Hence X is {i-metacompact by Theorem 3. 10.

COROLLARY 3.6. A weakly regular space X is WM-metacompact if and only if
cvery proper regularly closed subset of X is WM-metacompaci.

COROLLARY 3.7. A semi-regular space X is WM-metacompact if and only if every
froper regularly closed subset of X ts WM-metacompact.

THEOREM 3.12. Let X be a regular space and let & be an open basis of neigh-
tourhoods of a point x&=X such that X—G is M-metacompact for each GEZ, then

X 1s M-metacompact.

PROOF. Let Z={U ~+ XEA} be any open govering of X of cardinality <.
Since X is regular and €U, for some « &4, therefore there is a G, €% such
that x&G, CCIG,CU . Since X—G, 1s M-metacompact and {(X-G)NU o - ael}

1s an open covering of X—G, of cardinality <It, there exists a point-finite (in
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X—-G) open (in X—G,) refinement {Vﬁﬂ (X=G,) : pE4}) of {(X-G)O)NU ,: x&
A} where each Vg is open in X. Let Vg*=V ,N(X~CIG) for each f&4. Then
{Vﬁ* : BE4}U{U } is a point-finite open refinement of {U,:a&A} and hence

X is M-metacompact.

COROLLARY 3.8. If X is a regular space and Z is an open basis of neighbour-
hoods of a point x&EX such that X —G is metacompec: (countably metacompact) for each

GCEZ, then X is metacompact (countably melacompact).

Let us call a space locally M-metacompact if every point has a neighbourhood

whose closure is M-metacompact. Mréwka [16] has shown that every completely
regular, locally paracompact space can be embedded in a paracompact space as

an open subspace. We prove that a similar result also holds for M-metacompact

sSDaces.

THEOREM 3.13. Every completely regular locally WVi-metacompact space can be
embedded in an Vi-melacompact space as an open subspace.

PROOF. We know that every closed subset of an M-metacompact space is M-
metacompact. Also, by Theorem 3.11, 1t follows that Ji-metacompactness is
finitely additive with respect to closed . subsets. Again, Theorem 3.12 shows that
M-metacompactness satisfies the embedding condition (W) of Mréwka [16]. Hence
the result follows as in [16].

4. EDE-metacomp:ict spaces and mappings

THEOREM 4.1. If f is a closed, continuous mapping of a space X onto an M-

metacompact space Y such that f_l( y) is M-compact for every foint y of Y, then X
18 Wi-metacompact.

PROOF. Let Z={U _:a&4} be any open covering of X of cardinality <.

Let 4 denote the family of all finite subsets of A. Then [4]<<I. Since f_l( y) 1s

M-compact for each y&Y, there 1s a finite subset 7 of A such that f_l( »C U
ey

U.letV =Y—-f(X— U Ua). Then V_ is open and y&V _ and f—l(V x uyu..
o y = y Y YT pey @

Thus 7 = V., : y&4} is an open covering of ¥ of cardinality <. Since Y is
M-metacompact, there exists a point-finite open refinement {Wj;:o&E4} of 7.
>ince for each d, there is y;€4 such that WyCV_ , therefore for each Jd&4,

there exists 756;:1 such that f_l(Wg)Cf_l(V ) U U,. Thus {f_l(Wﬁ)ﬂUﬁ:

7 e A7 4
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aCy; 0&4’} is a point-finite open refinement of Z and hence X is 9%-metacom-
pact. '

REMARK 4.1, The methods of proofs of Theorems 2.2 and 4.1 are essentially
those of Hanail’s [8, Theorem 1} and [7, Theorem 1] respectively.

COROLLARY 4.1. [8, Theorem 4]. If f is a closed, continuous mapping of a space

X onto a metacompact space Y such that f—l( ) is compact for each v&=Y, then X
1S metacompact.

COROLLARY 4.2. If fis a closed, continuous mapping of a space X onto a count-

ably metacompact space Y such that f _.1( y) is countably compact for each y=Y,
then Y s couniably melacompact.

COROLLARY 4.3. Countable metacompactness is a fitting property.
(For the definition of a fitting property, see Henriksen and Isbell [9]).

COROLLARY 4.4. If X is an M-metacompact topological space such that every point
of X has a neighbourhood basis with cardinality <t and Y is an M-compact space,
then the product X XY is -metacompact.

PROOF. By Theorem 4 in [7] the projection P of X XY onto X is closed. Also,

the projections are continuous. For each xEX, P_l(x)={x}><Y. But Y is M-
compact and therefore {x}XY 1s IM-compact. Thus P is a closed continuous

mapping of X XY onto the Y-metacompact space X such that P_l_(x) is P-com-
pact for each x&X. By Theorem 4.1, XXY 1s IM-metacompact.

In particular, we have

COROLLARY 4.5. If X is a countably metacompact space satisfying the first axiom
of countability and if Y is couwntably compact, then the product space X XY 1is
countably wmetacompact. '

DEFINITION 4.1. [Ponomarev, 17] Let #Z” be a fixed covering of a space X. A
continuous mapping f : X—Y of the space X onto a space Y is cailed an (#7, p)-
mapping 1f, for every point y&Y, there exist a subcollection 27, of 77~ with the

property p in U{W : W&# "} and a neighbourhood V, of y in ¥ such that
£ VO)CUW :We?” }.

Let #° be an open covering of a space X and let f be a continuous mapping
of X into a space Y. Then f is said to be a Z -mapping 1f there exists an open

covering & of ¥ such that {f"‘l(G) : GE ¥} is a refinement of #°. f is said to
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be a finite 77 -mapping if there is an open covering & of Y such that each

member of the family { f_l(G) : GE ¥} is contained in a union of finitely many
members of # .

Let X be a class of topological spaces containing with any space X all spaces.
homeomorphic to X. The class of all spaces X such that for any open covering
%" of X there exists a # -mapping from Y into a space from ¥ is said to be
the class # -generated by ¥ and is denoted by 0(X). If 0(¥)=%, we say that
the class ¥ is closed with respect to Z -mappings.

THEOREM 4.2. A sufficient condition for a space X to be metacompact is that for
every open covering ¥~ of X, there exisis an (¥, p)-mapping of X onto some mela-
compact space Y where p is the property of being point-finite.

PROOF. Let #"={W} be any open covering of X. For each y&Y, let V, be an

open neighbourhood of y such that fhl(Vy)C UIW : We&?" } where f is the (#7,

p)-mapping of X onto the metacompact space ¥ and #”, is a point-finite subfamily
of #”. Then, {V :yEY} is an open covering of ¥ and therefore there- exists a
point-finite open refinement {U_ :a&A4}l of {V, ! yEY}. For each a&4, choose

y, such that U CV,. Then £ (U, Cf'(V,)CUW :WE¥",}. Then ¥”=

(Fw SOW WEW, i a4} is a point-finite open refinement of #” and hence
X 1s metacompact.

THEOREM 4.3. A sufficient condition for a space X to be M-metacompact is that
for every open covering ¥~ of X of cardinality <M, there exists an (¥ ,p)-mapping
of X onto some M-metacompact space Y, where p is the property of being finite.

PROOF. Let Z"={W ,: a4} be any open covering of X with |4|<<I. Let 4
be the family of all finite subsets of 4. Then [4]|<M. For each y&Y, let U, be

an open neighbourhood of ¥ such that fﬁl(Uy)CU (W, . a&y} for some a&A. Let

Z ={U} be the open covering of ¥ by such open sets. Let the index set 4 be
well ordered and for each U, let 4u be the first 7 such that / _l(U)CU W, :

a&y}. For any 7, let ’Vr be the union of all those U’s for which f_l(U)CU{Wa :
a&7ri. Then f'_l(Vr)C{Wa . ey} and {Vr : &4} is an open covering of ¥ of
cardinality <. Let {G}, : y&4} be a point-finite open refinement of {Vr : yeE4}.
Then #™' = { f_l(GT)ﬂW& €y, 7rE4} is a point-finite open refinement of #~
Hence X is IM-metacompact. |
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COROLLARY 4.6. The class of M-metacompact (melacompact, countably metacompact)
sbaces ts closed with respect to 7 -mappings.

COROLLARY 4.7. The class of M-metacompact (metacompact, countably metacompact)
spaces is closed with respect to finite # -mapping.

9. Yi-metacompactness and subsets.

THEOREM 5.1, If every open subspace of a space X is M-metacompact, then every
subspace of X s M-metacompbact.

PROOF. Let A be any SubSpag:e of an M-metacompact space X. Let Z be a

relatively open cover of A of cardinality <<Si. Let Z* be a collection of open
subsets of X such that Z={U*NA4 :U*&Z*}. Then G=U{U*:U*&Z} is an

open subspace and hence G is M-metacompact. Thus the open covering {U*:U*
&Z*} of G of cardinality <I® has a point-finite open refinement & * of Z*. Let

7 ={H*NA : H*<#*}. Then # is a point-finite open refinement of 27 and hence
A 1s M-metacompact.

COROLLARY 5.1. A space X is hereditarily countably metacompact (metacompact) if
every open subspace of it is countably metacompact (metacompact).

A space X is said to be totally normal if every open subset G of X 1s expres-
sible as a locally finite (in G) union of open F -subsets of X.

COROLLARY 5.2. A totally normal countably metacompact space is hereditarily
countably metacompact.

PROOF. In view of Corollary 5.1 we only have to prove that every open subset
-of a totally normal countably metacompact space X is countably metacampact.
Let G be an open subset of X. Then G=U{V_,:a&c4} where {V _:@a&EA4} is a

locally finite (in G) family of open F -subsets of X. For each a&4 let {F, ]

be a sequence of closed subsets of X such that V = 'U1F“ .. Since X is normal,
1= !

for each ¢ there exists an open subset W, ; such that F, ,CW _ . CClIW V..

For each ¢, let 77, ={W , ,:a&A4}. Then # = _U1 # ", 1s a ¢-locally finite (in G)
. P

open cover of & such that the closure of each member of #Z°, being a closed
subset of a countably metacompact space, is countably metacompact. Hence G is

countably metacompact, in view of Corollary 2.1. Hence the result.

Corollary 5.2 is proved for metacompact spaces by Hodel in [10].
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THEOREM 5.2, A subset A of a space X is M-metacompact if and only if for each
open set G containing A there is an W-metacompact subset ¥ such that ACY CC(.

PROOF. Only the ‘if’ part need be proved. Let {U NA:a&d} be a relatively

open covering of A with |A]<M. Let G= U U_. Then G is an open set contain-
a& A

ing A and therefore there exists an Mi-metacompact subset ¥ such that ACY CG.
Then, {U NY :a&A} is an open cover of ¥ of cardinality <it. Let {V 301/:

BE4} be a point-finite (in ¥) open (in ¥') refinement of {U NY :a&4} such
that each V 5 is open in X. Then {AﬂV5 . BE A} is a point-finite open refinement
of {U NA:acAl and hence A is M-metacompact.

COROLLARY 5.3. A subset A of a space X is metacompact (countably metccompact
if and only if every open set contwning A comtains a metacompact (countably meta-

compact) sef containing A.

A subset A of a space X is called a generalized F -subset if for every open set
U containing A there is an F -subset B such that ACBCU.

THEOREM 5.3. Every gemeralized F -subset of a countably wmetacompact space is

countably metacompact.

PROOF. Let Z={U_ . n&N} be a countable open covering of a generalized F -
subset of ¥ of a countably metacompact space X. Then for each =N, U =V

Y, where V', is an open subset of X. Let G= UNV“' Since & is an open subset
ne

of X containing ¥ and Y is a generalized F -subset, there exists a sequence {F }

of closed subsets of X such that ¥YC UNF CG. For each neN, {V_ :z&NtU
ne

{X—F } is then a countable open covering of X. Hence, for each #&EN there is a
point-finite open refinement (W, :mENIU{X—-F,} such that W, CV _ for

each m. Let 7" ={W , — kU F,.:n,meEN}. Then #” is point-finite, since {¥ —
: Za
U F,:n&N} and {Wﬂ,m : mENY} are point-finite. Also #Z is an open refinement

Er<n
of Z and hence Y is countably metacompact.

COROLLARY 5.4. Every generalized F _-subset of a metacompact space is meta-
compact.

THEOREM 5.4. Every generalized F -subset of an M-metacompact space is -
metacompact.

PROOF. Let {U,:a&4} be any open covering of a generalized F-subset ¥ of
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an M-metacompact space X. Let [A4]<M. For each &/, thereis an open subset

G, of X such that U =G, NY. Set &= UAG .~ Let {F, i nEN} be a sequence of
' o=

closed subsets of X such that YC U F,CG. Then, by Ii-metacompactness of X,
neN

there exists for each #&N, a point-finite open covering {Vn’ Y Laedt U{X -
Fﬂ}_ of X such that Vﬂ_aCGa for all ao&=A. Then {Vn‘aﬂY neEN, a4} is a
g-point-finite open (in Y¥) refinement of {U  : a&4}. Also, since X is in particular
countably metacompact, therefore, by Theorem 5.3, Y is countably metacompact.

Hence by Theorem 3.1, Y 1s M-metacompact.

COROLLARY 5.5. Every gemeralized cozero-subspace of an M-metacompact (meta-
combpacs) space is M-metacompact (metacompact).

PROOF. Trivial, since every cozero subset is an F_subset.

COROLLARY 5.6. Every subset of a perfectly normal M-metacompact (metacompact)
shace is M-metacompact (metacompact).

PROOF. Every open subspace of a perfectly normal space is a cozero set and
hence a generalized cozero set. Thus, by Corollary 5.5, every open subspace of
a periectly normal f-metacompact (metacompact) space is I-metacompact (meta-
compact). The required result then follows from Theorem 5. 1.

REMARK 5.1. For a countably metacompact space, Theorem 5.4 follows as a
coroliary to Corollary 5.2, since every perfectly normal space is totally normal.

THEOREM 5.5. Let X be a perfectly normal space. If S= |J S. be the union of
1N
countably many open subsets S; of X, then X is WM-metacompact if and only if each

S; s M-metacompact.

PROOF. The ‘only 1f’ part follows from Corollary 5.6. We shall prove the ‘if’
part. Since S is perfectly normal, the countable open covering {S;} of S has a

locally finite refinement {7} such that 7;CS8,, since S is perfectly normal. Let
{U, :acsA} be any open covering of S by open subsets of S of cardinality <IR.
Then for each 7z, {S,NU o - @€} 1s a relatively open covering of S, of cardinality
<, and since each S; is M-metacompact there exists a point-finite (in S,) family
7= {Vz.’ g pE4;} of open subsets of S; which cover S; and which refines {S.
U, a&d}. Then for each ¢, tI';(\V; 52 BE4,} is an open covering of T',. Also,
this is a locally finite and hence also a point-finite open refinement of {T,NU,:
a=A. Let 77 = {TiﬂVz., g ,GE‘{IZ-,T ac=A}. Then 77 is a point-finite open refinement
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of {U,:acA}. Hence S is M-metacompact.

COROLLARY 5.7. Let X be a perfecz‘ly normal space. If X= _UNSi where S; are
==
open subsets of X, then X is M-metacompact (metacompact) if and only if each S; is

M-metacompact (metacompact).

6. Simple extensions and Yi-metacompactness.

If (X,.7) is any topological space and A is a subset of X such that A&7
then the topology 7 (A)={UUWVNA) :U, Ve } is called a simple extension of
7 . The concept of simple extensions is due to Levine [12]. Simple extensions
have been studied in greater details by Borges in [3] where necessary and
sufficient conditions have been given for (X, .7 (A)) to inherit certain topological
properties from (X, .2 ). In the present section we obtain necessary and sufficient

conditions for (X, .9 (4)) to be M-metacompact if (X, 77 ) is M-metacompact.

THEOREM 6.1. Let (X, 9 ) be any space and let T (A) be a simple extension of
T . If X—-A=.9, then (X, F (A)) is W-metacompact if and only if (X—A,
I N(X—-A4)) is M-metacompact.

PROOF. Let (X, F (A)) be PM-metacompact. Since X—A is a closed subspace
of (X, 9 (A)), it follows that (X—A4, . (A)N(X—A4)) is M-metacompact. But
(X-A, 9 NX-A4A)=(X—-A,7 (A)N(X—-A4)), therefore (X—A4, 9 N(X-4)) is
PM-metacompact. Conversely, let (X—4, 7 N(X—A)) be M-metacompact. (4,7 N
A), being a closed subspace of (X, .77) is M-metacompact. Hence X is the union
of two disjoint IM-metacompact 7 (A)-open subspaces A and X—A. Thus
(X, 7 (A4)) is M-metacompact by Corollary 3. 4. |

COROLLARY 6.1. Let .7 (A) be a simple extension of a topology I on X and

let X—A&. 7, Then (X, 9 (A)) s metacompact if and only if (X—A, 5 N(X—A4))
is metacompact.

THEOREM 6,2, Let (X, 9 ) be an M-metacompact regular space and A be a subset
of X. Then (X, F (A)) is an M-metacompact regular space if and only if it is a
regular space and X — A is an M-metacompact subspace of (X, .7 ).

PROOF. The “only if” part is obvious, since X—A is a closed subspace of (X,
7 (A4)). To prove the “if” part, let Z be a .Z (A)-open covering of X of car
dinality <&. Without any loss of generality we assume that for each x&X -4
there exists some UeEZ N9 ={GNH : G&¥, H&E.9 } such that x&U and UNA
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=@, for each e€ A there exists some U&.Z such that UNAEZ’, and for each
y&ClA— A there exists some VEZ NZ such that y&V. let ' ={Uc : UcS.9
and UN(CIA—A)#¢}. By Theorem 3.2 in[3], Cl4A—A is 9 -closed and hence
7 U(X—-(ClA—A)) is a .7 -open cover of cardinality <9t of the It-metacompact
space (X,.7 ). Let 7777 be a point-finite .7 -open refinement of 7 YU(X — (Cl4A~-
A). Let Z77={We7” : WN{rd—-A)#p}. Then #Z” is a point finite family cf
7 -open subsets of X which covers FrA— A4 and refines 7. Let W =U#"’. Then
A-W’ is a F -closed subset of X, since A—W’=(AUFrd)~W’ =CIA-W’ (as W’
DFrA—A). Let E={VEs (| VNAEZ and VN(A-W’)#¢}. Then as above we
can find a point-finite family &’ of 7 -open subsets of X which covers A—-W"
and refines &. Hence €"={VNA:VE¥’} is a point-finite family of 7 (A)-
open subsets of X which refines {(VNAEZ : VN(A-UZ)#P}. Again, let F =
Ve :Ue 7, UNX-W'UA))#¢ and UNA=¢}. Then # covers X—(W’'U
A) since W UADCIAUW’. Also the cardinality of #° is <. Since X —(W'UA)
1s a closed subset of (X—A4, 9 N(X—A4)) there exists a point-finite family #”

of % -open subsets of X which covers X—(W’'UA) and refines #°. Now ' =%"
U&” U’ is a point-finite .7~ (A)-open refinement of 7.

COROLLARY 6.2. If (X,.9) is a metacompact regular space and A is a subset of

X, then (X, 7 (A)) is a metacompact regular space if and only if it is a regular
space and X — A is a metacompact subspace of (X, .7 ).

THEOREM 6.3. Let (X .7 ) be hereditarily WM-metacompact regular space and A
a subset of X. Then (X, 7 (A)) is hereditarily Mi-metacompect and regular.

PROOF. Let Y be any subset of X. Then (¥, (9 NY)(ANY)) =, 7 (ANY).
Therefore (¥, 7 (A)NY) is M-metacompact follows from the above Theorem 6. 2.

COROLLARY 6.3. Let (X,.9 ) be a hereditarily metacompact regular space and
let A be asubset of X. Then (X, 7 (A)) is a hereditarily metacombact regular space.

THEOREM 6.4. If (X,.7 ) is hereditarily M-metacompact and A is a subset of
X such that X —AES.T then (X, 7 (A)) is hereditarily M-metacompact.

PROOF. Since (X,.7 ) is hereditarily -metacompact, therefore (X—A4,.9 N
(X—A4)) and (4, 9 NA) are also hereditarily M-metacompact. But (4,9 NA4)=
(4,7 (A)NA) and (X—A4, I NX-4)=(X-4, 9 (AONX—-A4)). Thus X 1s
the union of two disjoint 7 (A)-open hereditarily M-metacompact subspaces 4
and X—A. Hence (4,.9 (A4)) is hereditarily -metacompact.



Some Generalisations of Metacompact Spaces 161

COROLLAR 6.4. If (X,.9) is hereditarily metacompact and A is a subset of X
such that X—A€.9, then (X, 7 (A)) is herediiarily metacompact.

7. Invertibility and IM-metacompactness.

DEFINITION 7.1. [Doyle and Hocking, 4]. A space X is said to be invertible if
for each non-empty open subset U of X, there exists a homeomorphism % of X
such that A(X~U)CU. k is called an snverting homeomorphism for U.

DEFINITION 7.2. [Hong,11]. A space X 1s said to be a gewneralized inveriible
space if there exists a proper open subset U of X and there 1s a homeomorphism:

n of X onto X such that for each x&X, #'(x)CU for some integer #. T'he pair
(U, h) 1s called an inverting pair for X.

THEOREM 7.1. If (X,.7 ) is a countably metacompact generalized invertible space
and (U, ) is an inverting paiy for X and UCA where A is M-metacompact, then X
s M-metacompact.

PROOF. Let Z={U_ : a&4} be any open covering of X of cardinality <. For
each integer n, {# (U a,)ﬂA : ae A} is a relatively open covering of A of cardinality
<M. Since A 1s M-metacompact, there exists a point-finite family {VﬁﬂA . R4’}
which refines {#"(U _)NA:ac4} and each V 5 is an open subset of X. Then for
each integer 7, {VﬁﬂU : Bed"} is a point-finite family of open subsets of X.
Consider the family Z7"= {kﬂ(VﬁﬂU) : ,BEA”} which 1s a point-finite family of
open subsets of X. Also, for each S &€ 4", there is an a & 4 such that Vg NUC

B (UHNA Therefore 5" (V,NUICH "W UHINACY,. Thus 7 = U 7 is

a g-point-finite open refinement of Z7 and hence X 1s Y-metacompact by Theorem:
3. 1.

THEOREM 7.2, Let X be an invertible space and let U be an open M-metacompact
subspace. Then X is M-metacompact.

PROOF. Let % be an inverting homeomorphism of U. Then f(U) is open and
X=UUf(U). Since U and f(U) are both M-metacompact and open, the result
follows from Corollary 3. 4.

COROLLARY 7.1. Let X be an invertible space and let U be an open metacompact
subspace. Then X is melacompacl.
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9. Almost M-metacompact spaces.

A space X 1s called almost metacompact if every open covering of X admits of
a point-finite weak refinement whose closures cover the space X.

Almost M-metacompact spaces are, then, defined analogously.

Below we give an example to show the existence of an almost metacompact

space which is not metacompact.

EXAMPLE 8.1. An almost metacompact space which is not metacompact. Let
X be an uncountable set and let p&X. Let .9 consist of all supersets of p and
empty set. Then (X, .7 ) is not metacompact, since the open cover {{p,x} : xEX}
admits of no point-finite open refinement. But, since Cl{p} =X, the space is
almost metacompact.

THEOREM 8.1. Let {G . oA} be a point-finite open covering of X. If each
Cl G, is almost M-metacompact, then X is. almost M-metacompact.

PROOF. Let {U.:B&4} be any open covering of X of cardinality <%t. Then,

for each a4, {U ﬁﬂCI G, :pBE4 is a relatively open covering of Cl G, of
cardinality <. Since Cl G, is M-metacompact, there exists a point-finite open (in
ClG,) weak refinement {VrﬂCl G, :rel’ ) of {U 5ﬂCI G,: BeE 4} such that each Vr
is open in X and the closures of Vrﬂ ClG, in ClG, cover ClG,. Then the family
{VrﬂGa, . yel’ s a4} is a family of open subsets of X which is point-finite
and whose closures cover X, since {G, : a&4} is a covering of X and Cl (VVQCI
G )=Cl (VrﬂG .)» V., being open. Hence X is Yi-metacompact.

THEOREM 8.2. If SCX where S—= UAS“ and each S, is open in S and {S, .«
xe

€4} is point-finite (Gn S), thern S is almost Vi-melacompact if each S, ts almost

M-metacompact.

PROCF. Let {SOU 8 . B&4} be any relatively open covering of S with [4|<<IN.
Then, for each &4, {S NU g . BE4} is a relatively open covering of S of car-
dinality <#t. Since S, is almost M-metacompact, there exists a point-finite (in S _)
family ?fa,: {V ay r& a,} of open subsets of Scr which weakly refines {S_ U g
B4}, hence also {U 5[’]8 : BE4} and whose closures in S (and hence in S) cover
S, Then, 7"={V_ .- aEA, rE4 J 18 a point-finite family of open subsets of S
which weakly refines {S(I\U 8 pE4}l whose closures in S cover S. Hence S is

almost N-metacompact.
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COROLLARY 8.1. If each member of a point-finite open covering of a space is
almost W-metacompact, then the space is almost i-melacompact.

REMARK 8.1. The results of Theorem 8.2 and Corollary 8.1 remain true if
almost 9-metacompact be replaced by almost metacompact.

THEOREM 8.8. If X is almost metacompact, Y is almost compact, then X XY is

almost metacompact.

PROOF. Let Z be any open covering of XXY. For each z=(x,y) in XXY,
there are open sets V,and W, in X and Y respectively such that (x, »EV X
W CU for some UEZ . For each x&X, denote the set {x} XY by E,. The family
(W,.2€E } will then form an open cover of the almost compact space Y. There-
fore there is a finite subset & of £ such that {Cl W, :z2&F } covers Y. Let
V.,=N{V,:2€F }. Then 77={V_{x&X} is an open covering of the almost-
metacompact space X. Thus there is a point-finite family 77* of open subsets of

X which weakly refines 7 and the family {Cl V : VEZ ¥} covers X. Since 7 *
weakly refines 77, therefore for each V&7* there exists an x,&X such that V

CV,. Then, Z={VXW,.VEZ*, 2&F }isa point-finite family of open subsets
of X XY which weakly refines & and whose closures cover X X¥Y. Hence XXY
is almost metacompact.

COROLLARY 8.2. The product of an almost metacompact and a compact space is

almost metacompacl.

COROLLARY 8.3. The product of a metacompact and an almost compact space is
almost metacompact.
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