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ON STRONGLY CONTINUOUS MAPPINGS 

By Shashi Prabha Arya and Ranjana Gupta 

The concept of strongly continuous mappings was introduced by Levine [3J. 

These mappings were aIso considered by CuIIen [2J and NaimpaIIy [6J. NaimpaIIy 
generaIized some results on the function space of continuous mappings to the 

function space of strongly continuous mappings. It wiII be seen that even a 

homeomorphism may fa iI to be strongly continuous and consequentIy, many of 

the mappings that we come across do not possess strong continuity. However, 

the range of a strongly continuous mapping is determined by the component of 

its domain and from this point of view, the study of strongly continuous map

pings seems to be interesting. We shaIl divide the paper into six sections. Some 

characterizations and related results wiII be obtained in section 1. In section 2, 
the aIgebra of strongly continuous mappings wiII be investigated. Section 3 wiII 

be concerned with the study of the behaviour of strong continuity in relation to 
connectedness. In section 4, strong continuity in re1ation to compact mappings 

wiII be studied, and in section 5 some preservation results wiII be obtained. 
In the Iast section, the concept of completely continuous mappings wiII be intro

duced and studied. The cIass of completely continuous mappings contains properly 

the cIass of strongly continuous mappings. 

1. Definition and eharaeterizations of strong eontinuity 

DEFINITION 1. 1. [Levine, 3J A mapping f: X • Y is said to be strongly con
iz"nuoχs íf for every subset A of X , f(A-)cfCA). 

Levine þroved that f: X • Y is strongly continuous if and onIy if the inverse 

image of every subset of Y is open Cor cIosed). It fo I1ows therefore that f is 

strongly continuous if and only if the inverse image of every set is open as weII 
as cIosed. 

Obviously, every 
mapping however, 

foIIowing examples: 

strongly continuous mapping is continuous. A continuous 
may faiI to be strongly continuous as is shown by the 

EXAMPLE 1. 1. Let R be the set of reals with co-countable topology and let 
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Y = {a. b. c} with top이ogy ‘.9'"'"*= {Y. rþ. {c}}. Then the mapping !defined by 

if x is rational 
!(x) = 

b if x is irrational 

is continuous but not strongly continuous. 

EXAMPLE 1. 2. Let X = {a. b. c} and let ‘r be the indiscrete topology for X. 

Then the identity mapping of (X. ‘.9'"'") onto (X. ‘.9'"'") is a continuous mapping 

which is not strongly continuous. 

Example 1. 2 proves also that even a homeomorphism may fail to be strongly 

contínuous. 

The following theorem is immediate in view of the definition. 

THEOREM 1. 1. A mappz'ng ! : X • Y z's sirongly conHnuoκs zj and only i! 1-1
(y) 

is opeη lor each yεY. 

COROLLARY 1. 1. A mapping f: X 띄임 Y is strongly continuous zj and only zj 

each inverse set z's open as well as closed. 

COROLLARY 1. 2. Correspondz'ng to eαch decomþosition 01 a space X into disjoint 

open sets. there exz"sts a strongly contz"nuoμs maPPing on X. 

COROLLARY 1. 3. The range 0/ every strongly contz"nuous mapping on a lz"ghtly 

coηzpact space (that z's. a space in which every locally J딩~'nite lamz"ly 01 open sets z's 

linite) is /z'nüe. 

PROOF. No infinite family of disjoint open sets in a lightly compact space is 

locally finite. Therefore a pseudo-compact space has decompositions into open sets 

and these decompositions have finite number of members. The result now follows 

easily in' view of corollary 1. 3. 

It should be noted that a mapping 1: X • Y such that f-1(y) is c1osed for each 

yεYn월d not necessarily be strongly continuous as is shown by the following 

example. 

EXAMPLE 1.3. Let X be the set of real numbers and let be the usual topology 

for X. If i : CX.~)→CX，~) bethe identity mapping. then it is such that i- 1(y) 

is cÏosed for each yEX: However. i is not strongly continuous. 

THEOREM 1. 2. A mapping 1: X • Y z's strongly contz"nμoμs zj and only zj the 

decoηφosüion space generated by 1 z's a discrete space. 

PROOF. If 1 is strongly continuous. then each member of the decomposition 
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1S open and closed. Consequently each point in the decomposition space is open 
.and closed and hence the decomposition space is discrete. The ‘if’ part is obvious. 

DEFINITION 1.2. [Levine. 4] A mapping 1 from X to Y is said to be weakly 

.contz"nuous if for each point xEX and each φen set H containing ICx). there 

is an open set G containing x such that I(G)CH. 

THEOREM 1.3. Every weakly contz"nuous mappz"ng zOnto a discrete space is strongly 

.contz"nuous. 

PROOF. It is easy to prove. 

2. AIgebra of strongly continuous rnappings 

THEOREM 2. 1. Restric#on 01 a strongly contz"nuous mappz"ng 1: X • Y to any 

sχbset 01 X is strongly contz";낌ous. 

PROOF. Let A be any subset of X. For any point yεY. CfIA)-l(y)=1‘ \y)n 

A. Since 1 is strongly continuous. therefore 1-1(y) is an open subset of X. It 

follows that 1-1(y)nA is a relatively open subset of A. Hence I1 A is strongly 

,continuous. 

THEOREM 2.2. 11 1: X • Y is a strongly continμoκs maptηing and g : Y-• z zOs 

any mappz"ng. then go 1: X • Z is strongly contz"nμOus. 

PROOF. Let A be any subset of Z. Then g一l(A) is a subset of Y. Since 1 is 

strongly continuous. therefore I-\g -l(A)) is an open subset of X. that is. 

(gof) -l(A) is an open subset of X. Hence gol is strongly continuous. 

COROLLARY 2.1. The composite 01 two strongly continμoμs mappings is strongly 

continκous. 

The foIlowing example shows that the resuIt of Theorem 2.2 is not necessariIy 

true for continuous mappings. 

EXAMPLE 2. 1. Let X = {a. b. c} and Iet ‘!T be the indiscrete topology for X. 

Let 1: (X • .!T)• (X. ‘!T) be the identity mapping. If ‘!T* be the discrete top이ogy 

for X and if g : (X. ‘!T) • (X’ ‘r*) be the identity mapping. then 1 is continuous 

but gol Ís not continuous. 

THEOREM 2.3. 11 1: X .y is a weakly contz"nuous mappz"ng and g: Y • Z is 

.strongly contz"nuoμs. then go/: X 'Z is strongly continμoμs. 

PROOF. Let A be any subset of Z. Since g is strongly continuous. therefore 

• 
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g -1(A) is an open as weIl as closed subset of Y. Since / is weakly continuous 
and g-l(Aj is an open subset of Y, therefore (f-1(g-l(A)))-c=f-1(g-l(A)-)= 

-1 ____ -1 J' .".. ~ ~， -1 f (g (A))=(g。f) (A). It fo11ows that (g。f)-l(A) is a closed subset of X. 

Hence go / is strongly continuous. 

COROLLARY 2.2. 1/ /: X • Y Z"S contz"nμous and g : X 'Z z.s strongly contz"nuous. 
then go/: X 'Z z.s strongly contz"nχous. 

THEOREM 2. 4· Let f : x--￡AXa % a st7%gly c0%t쩌ous mapPz"ng. L강 /a: X 

• X a• /or eash αεA be de껴!.ned as /a(x)=x zf /(X) = (Xa). Then the mapPz"ng t.α 

is St1’ongly contz"nuous /or each αεA. 

PROOF. Let Pα denote tlre projection of nXa onto X a• Then. obviously. t.α 

=Pα。f for each αEA. Since / is strongly continuous. therefore each 강 is strongly 

continuous in view of Theorem 2. 2. 

THEOREM 2. 5. Let /1 : X 1• Y 1 and /2:X2• Y 2 be strongly contz"nuoμs mapPz"ngs. 

LetX=X1xX2 and Y=Y1 XY2• Let/:X• Y be de/z"ned as /(X1' X2)=(f1(X1), 
/2(X2)). Then / z"s strongly conNnuoμs. 

PROOF. LetyEY1XY2• Theny=(yl' y2) where ylεY1 and y2εY2· Thenf-1(y) 

=fr1까)×fgl(Y2). smce f1 : Xl-• Y 1 is strongly continuous. therefore f;1(Y1) 

is an open subset of X 1• Similarly. /..감(y2) is an open subset of X 2• It foIlows 

that /-\y) is an open subset of X. Hence / is strongly continuous. 

3. Connectedness and strong continuity 

Levine [3] proved that if /: X • Y is strongly continuous and A is any non-empty 

connected subset of X. then /(A) consists of a single point. He further proved that 

the converse of the above statement holds if X is locaIly connected. It foIlows 
immediately that every strongly continuous mapping /: X • Y is constant on 
every component of X. CuIlen [2] proved that every strongly continuous mapping 

is constant on every quasi-component of X where by a quasi-component is meant 

a ma,ximal quasi-connected set (A closed set A is said to be quasi-connected if 

for every clo-open set U such that UnA",ø. we have ACU). 

THEOREM3.1. A space X z.s connected z"/ and only z"/ èvery strongly conNnμous 

maÞPing on X is constant. 

PROOF. The ‘only if’ part is obvious in view of Theorem 2 of Levine [3]. To 
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prove the ‘if’ part, let X be disconnected. Then there exists a non-empty proper 
subset A of X which is both open as well as closed. Let Y = {a, b} where a낯b and 

let Y be any topology for Y. Define a mapping 1: X • Y such that I(A) = {a} 

and I(X - A) = {b}. Obviously, I is a non-constant strongly continuous mapping on 

X. But this is a contradiction. Hence X must be connected. 

THEOREM 3.2. Let X be a locally connected space and let m be the cardinaWy 01 

the lamily C{? 01 all components 01 X. Then any space with Ca1’dinaUty 드m z.s the 

ùnage 01 X under some strongly contz"nuoμs maPNng. But a space wüh cardinaUty 

> 센 z·s χot the image 01 X under any strongly conünuous ηzaφ'ping. 

PROOF. Let Y be any space with cardinality !n::s:m. Let C{?' be the subfamiIy of 

C{? of cardinality !n. Then there is a one-to-one mapping g from C{?' to Y. Define 

a mapping 1: X • Y such that/(x)=g(D) when xEDxEC{?' and l(x)=g(Do) when 

xεDEC{? but DεC{?'， Do being some fixed member of C{?'. Since each DεC{? is open 

as well as closed, therefore 1-1(y) is open as well as closed for each yεY. Hence 

I is strongly continuous. Further if 1: X • Y is a strongly continuous mapping of 

X onto Y then I can take at most m different values where 없 is the cardinality of 

C{? Therefore the cardinality of Y is 드m. 

DEFINITION 3. 1. A space X is said to be totally dz.sconnected if the singletons 

are the only connected subsets of X. 

THEOREM 3. 3. A mapPing 1: X • Y Irom a locally connected space X to a totally 

disconnected space Y is strongly continuous ZJ and only zf I is a connected mapping. 

PROOF. Every strongly continuous mapping is obviously connected. Conversely, 
if I is connected, then it must be constant on every component of X , since in 

a totally disconnected space, singletons are the only connected sets. Since X is 

locally connected, therefore every component of X is open. If follows that 1-1(y) 

is open for each yεY. Hence I is strongly continuous. 

COROLLARY 3. 1. Eνery weakly continμous (and hence every contz"nuous) maPNng 

Irom a locally connected space to a totally disconnected space is strongly con#nμous. 

Obviously, if 1: (X, ‘:T)→(Y，~) be a strongly continuous mapping then for 

any other topology~' for Y , the mapping 1: (X, ‘:T)→(Y，~끼 is also strongly 

continuous. It follows therefore that the knowledge of the domain of a strongly 
continuous mapping does not help in knowing the topology of its range. However, 
a study of all strongly continuous mappings on a space X may reveal interesting 
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밍roperties about the space X. 

THEOREM 3. 4. Let fØ denote the decomposz"tion o[ a space X into. components. 

Let íJJl =cardinalz'ty o[ fØ. The space X z's locally connected zf and only if tlzere 

.exists a space Y o[ cardinaUty μIhz'ch is a strongly continμous image o[ X. 

PROOF. The ‘only if’ part can be proved as the first part of Theorem 3. 2. To 

‘prove the ‘if’ part, suppose that the space Y described in the theorem exists and 

that [: (X, ‘:T)• (Y, Zf) is strongly continuous. Let D þe any component of X. 
Then [(D)=Yd where ydεY. Since .f-l(Yd)=f-1(f(D)) is closed as well as open, 

therefore either [-I(f(D))=D or there is another component D' of X such that 

uc=f-l(Yd). This comp1etes the proof of the theorem. 

THEOREM 3. 5. Let [: A• Y be a strongly conUnμous maPNng. Then [ can be 

~xtended strongly continμously to any locally connected space which contαins A as 

a closed and open set. 

PROOF. Let X be any locally connected space containing A as a closed and 

open set. Define a mapping g : X • Y such that g(x)=[(x) for all xεA and if 

xεX - A and K is the component of X containing x , then let g(K) = some fixed 

point of Y (A being both open and closed, KnA=çb). Since g is a mapping from 

a locally connected space such that the image of every non-empty connected set 

is a single point, therefore g is strongly continuous. 

DEFINITION 3.2. A space X is said to be semi-locally connected if for every 

point xεX and every neighbourhood U of x, there exists a neighbourhood V of 

..x such that xEVCU and X - V consists of a finite number of component. 

THEOREM 3.6. Let X be a semz"-locally connected space and let [: X • Y be a 

.strongly continuoμs maPNng [rom X onto Y. Then Y must be a [z"nz"te space. 

PROOF. Let U be any open subset of X such that X -U consists of a finite 

number of components. In view of Theorem 2 of Levine [3l , [(X U) consists of 

a finite number of points only. Let [(X-U)=F. Then [-I(Y-F)CU and 

f -l(Y-F) is dosecl. It fo1lows that f-1(F) is open- Therefore, we can flnd an 

open subset G of [-I(F) such that X G has a finite number of components. 

Therefore [(X -G) has a finite number of points. Now, X - [-I(F) cX -G and 

f(X - G) is finite. It follows that Y - F is a finite set. Hence F U (Y ~. F) is a 

finite set. 

• 
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DEFINITION 3.3. A space X is said to be weakly locally connected if every point 
。f X has a connected neighbourhood. 

THEOREM 3.7. Let 1: X • Y be a mapp쩌g Irom a weakly locally connected space 

X to a space Y such that the image 01 every non-empty connected subset 01 X z.s a 

single point. Then 1 z.s strongly contz"nμous. 

PROOF. Let A be any subset of X. We shaIl show that I(A')C/(A) where A' 

denotes the derived set of A. Let xEA'. Since X is weakly locaIly connected, 

therefore there exists a connected neighbourhood N of x. Since xεA’， therefore 

NnA~ø. Obviously I(x)εI(N). Since I(AnN)C I(N) and N is connected, 
therefore I(N) is a single point. It foIlows that I(AnN) =/(x); Since I(AnN) 

εf(A) ， therefore I(x)εf(A). Thus I(A')ζI(A) and hence 1 is strongly continuous. 

COROLLARY 3.2. [Levine, 3]. It 1: X • Y z.s a maPPing Irom a locally connected 

space X to a space Y sμch that the image 01 every non-empty connected subset 01 X 

is a single point, then 1 is strongly contz"nμous. 

With the help of Theorem 3.7, the foIlowing stronger form of Theorem 3.3 can be 

proved. 

THEOREM 3. 8. A maPPing 1: X • Y Irom a weakly locally connected space X to 

a totally disconnected space Y is strongly contz"nuous il and only U 1 z.s a connected 

l1wpPing. 

4. Compact mappings and strong continuity 

DEFINITION 4. 1. A mapping 1: x • Y is said to be a compact mapPz"ng if the 

inverse image of every compact subset of Y is a compact subset of X. 

THEOREM 4. 1. Every strongly contz"nuous mapPz"ng Irom a compact space z.s compact. 

PROOF. Let 1: X • Y be a strongly continuous mapping where X is a compact 

space. Let A be any compact subset of Y. Since 1 is strongly continuous, there

fore I-\A) is a closed subset of X. Since X is compact, therefore I-
1
CA) is 

‘compact. Hence 1 is a compact mapping. 

DEFINITION 4. 2. [Levine, 5]. A space X is said to be a C-C space if a set is 

compact if and only if it is closed. 

THEOREM 4.2. 111: X • Y is a maPPing Irom a C-C space X to a hereditaη~.ly 

c01，ηþact space Y (that is, every subspace 01 Y z.s compact) then 1 z.s strongly 

conti1zμoκs zf and only zf zï is compact. 
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PROOF. If f is strongly continuous and A is any compact subset of Y , then 

f-l(A) is a closed subset of X. Since X is a C-C space, therefore f-\A) is 

compact and hence f is a compact mappirig. Conversely, if f is compact. and if 

B be any subset of Y, then Y being hereditarily compact, B is compact. There

fore f-l(B) is a compact subset of X. Since X is a C-C space, therefore f-l(B) 

is closed. Hence f is strongly continuous. 

THEOREM 4.3. If f: X • Y is a strongly contz"nμous mappùzg, then the image of 

evel'Y compact sχbset of X is a /z"nite set. 

PROOF. Let A be a compact subset of X. Since f is strongly continuous, 

thereforef-1(y) is open for each yEY. Thus the family {f-l(y): yεf(A)} is an 

open covering of the compact set A.. Therefore there exist finitely many points 

y l' "', yn in f(A) such that ACU {f-l(Yi) : i=l, …, n}. If f(A) is infinite, 

then there exists a point zεf(A) such that Z :FYi for any z"=l , …, n. This means 

that there exists xεA : f(x)=z. It follows that x종U {f-l(Yi) : z"=l, …, n}. But 

this is a contradiction. Hence f(A) must be finite. 

5. Some preservation results 

DEFINITION 5. 1. A space X is said to be almost compact if every open covering 

of X has a finite subfamily whose closures cover X. 

THEOREM 5. 1. Every strongly continμous image of an almost compact space is 

compact. 

PROOF. Let f: X • Y be a strongly continuous mapping of an almost compact 

space X onto a space Y. If {Ua : αEA} be any open covering of Y , then 

{f-l(U싱 : αεA} is a covering of X by cIo-open sets. Since X is almost compact, 

therefore there exists a finite subfamiIy {f-l(U_): z" =1, …, n} of {f-l (Uα) : 
gl 

αEA} which covers X. It follows that {U a , : i = 1, …, 씨 is a finite subcovering 

of {Uα : αεA} and hence Y is compact. 

COROLLARY 5. 1. Eνery strongly contz"nuous image of a nearly compact space. 

that is, every covering by regulaγly open sets has a /z"nz'te sμbcovering， is compact. 

DEFINITION 5.2. rSingaI and Arya, 8]. A space X is said to be nearly para

compact if for every open covering z! of X , there exists a Iocally finite family 

r of open subsets of X such. that each member of γ is contained in some 
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member of Z! and the fam iIy {Vo: Vεr} covers X. 

DEFINITIO~ 5.3. [Arhangel'skii, 1]. A mapping f of X onto Y is said 

almost op깅 if for each yεY， there exists an xεf-I(y) such that there 

open base ~ at x such that f(G) is open for each GE종. 
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THEORE.Yl 5.2. If f is a closed, strongly continμoμs， alηtOst o.φ'en mapp쩌g of X 

OMto Y sztclz that f-1(y) 2·s c0%PGct for each yεy， then Y z.s paracompact zf X 

is nearly paracompact. 

PROOF. Let {Uα : α드A} be any open covering of Y. Then U-1(Ua): αEA} is 

an open covering of X. Since X is nearly paracompact, therefore there exists a 

locally finite famiIy {V ß : ßEA} of open subsets of X such that each V ß is con
O 

tained in some f-L(Ua) and the famiIy {vβ : ßEA} is a covering of X. We shall 
o 

prove that the famiIy {[f(vß)r: BεA} is a locally finite open refinement of 

{Ua : αεA}. Let yεY. Then, for each xEf-\y), there exists an open set Mx 

such that xEMx and Mx intersects atmost finitely many members of {V.8: βεA}. 

Then since {Mx : xEf-1(y)} is an open covering of f-l(y) and f-l(y) is compact 

n 

Since each M;: ,. intersects finitely many sets V ß therefore the set M= i~lMx， 

intersects finitely many V ßS' It follows that the set Y - f(X - M) is an open 

set containing y which intersects . atmost finitely many sets in {f(V ß) : ßεA}. 

Therefore, the family {f(V ß) : ßεA} and hence also the famiIy {[f(V씨] 0 : ßIεA} 
o is locally finite. Since {Vβ : ßEA} is an open covering of X and f is almost 

) : βεj 

o rT"\1I 1" ~ .. ~/T ... , .. 0 
crf(Vβ)] v. Therefore {rf(V씨] V : ßεA} is also a covering of Y. Obviously, each 

[f(V ß)J 0 is open and is contained in some U a' Hence {[f(V ß)] 0 : βεA} is a locally 

finite open refinement of {U a : αεA} and so Y is paracompact. 

DEFINITION 5.9. [Singal and Arya, 7J. A space X is said to be almost para

CO112ψact if for every open covering Z! of X , there exists a locally finite family γ 

of open subsp.ts of X such that each member of γ is contained in some member 

of Z! and the family {V: Vεr} is a covering of X. 
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THEOREM 5.3. 11 1 z's a strongly continuous, open ηzap#ng 01 a space X onto a 

space Y sμch that f-1(y) z·S C0%Pact fO7 each yεY， then Y is ψoz'ntwz'se paracompact 

zf X is almost paracompact. 

PROOF. Let {Ua : aεA} be any open covering Y. Then {f-l(Uα) : αεA} is 

an open covering of X. Since X is almost paracompact, there exists a locally 

finite family {V ß : ßεA} of open subsets of X such that the family {l7β : ßEA} 

covers X. Since {V ß : ßεA} is locally finite and I-\y) is compact for each yεy， 
therefore it is easy to verify that (/(V ß) : ßεA} is point.finite. Since 1 is open, 

therefore each I(V ß) is open. AIso, 1 is strongly continuous and therefore I(V김 

= I(V ß)' It follows that {f(V ß) : ßEA} covers Y. Thus {f(V ß) : ßεA} is a point

finite open refinement of {U a : αεA} and hence Y is pointwise paracompact. 

6. Completely continuous mappings 

DEFINITION 6. 1. A mapping 1: X • Y is said to be comPletely continuous if the 
inverse image of every open subset of Y is a regularIy open subset of X. 

Obviously, every strongly continuous mapping is completely continuous and every 

completely continuous mapping is continuous. The converse implications do not 

hold as is shown by the following example. 

EXAMPLE 6. 1. Let X = {a, b, c, d} and let ‘!T = {X, rþ, {a, b, c} , {c}, {a, b}}. Let 
Y = {p, q, r} and let ~ = {X, rþ, {p}, (q }, {p, q}} If 1: (X, ‘!T)• (y , ~) be the 

mapping defined by f(a)=p , l(b)=P, l(c)=/(d)=r, then 1 is a completely 
continuous mapping which is not strongly continuous. 

EXAMPLE 6.2. Let X = {a, b, c, d} and let= {X, rþ, {a, b}} Let Y = {p, q} and let 
1/ = {X, rþ, {p}}. If 1 : (X，.5T)→(Y，~) be the mapping defined by l(a)=p=/(b) 

and I(c) =/(d) =q, then 1 is a continuous mapping which is not completely 
contllluous. 

The restriction of a completely continuous mappÍng may fail to be completely 

continuous as is shown by the following example. 

EXAMPLE 6.3. Let X = {a, b, c, d} and let ‘!T = {X, rþ, {a, b} , {c} , {a, b, c} }. Let Y = 

{x,y , z} and let ~= {y, rþ, {x,y}}. If 1: (X, ‘!T)→(Y，~) be the mapping defined 
by I(a)=x, I(b)=y, I(c) =/(d) =z, then 1 is completely continuous. However, 
the restriction of 1 to the set {a, d} is not completely continuous. 

THEOREM 6. 1. If 1: X • Y is comPletely continμousandg:Y→Z is contz'nκoμs. 
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then go/: X • Z Z"S completely continuous. 

PROOF. Let U be any open subset of Z. Since g is continuous, therefore 

g-l(U) is an open subset of Y. Since 1 is completely continuous, therefore 

1-1(g-1 (U)) is a regularly open subset of X. That is, (양。'I)-\U) is a regularly 

open subset of X. Hence gol is completely continuous. 

COROLLARY 6. 1. The composite 01 two completely coηtinuous maPþings z.s comp!etely 
contz"nμoμs. 

DEFINITION 6.2. [Singal and Singal, 10] A mapping 1: X • Y is said to be 
al most open if the image of every regularly open set is open. 

onto 
THEOREM 6.2. 111: X -----• Y z.s almost open and comp!etely contz"nuous and 

g:Y• Z z.s a maPþing such that gol z.s comp!etely contz"nuous, then g is continuous. 

PROOF. Let G be any open subset of Z. Since gol is completely continuous~ 

therefore (gol) -l(G) is a regularly open subset of X. Since 1 is almost open~ 
therefore 1((go/)-l(G)) is an open subset of y , that is, 1(f-l(g-l(G)) =g-\G} 

is an open subset of Y. Hence, g is continuous. 

THEOREìVI 6. 3. Let 1: X • n X_ be completely continμous. For each αεA， 
aEA U 

deline fα : X→Xα by setting la(x)=xα where I(x) = (xa). Then each f，α is comPletely 

contz"“uous. 

PROOF. Let Þa denote the projection of X onto Xα. Then for each αεA， la 

Þa 0/. Since 1 is completely continuous and 양α is continuous, therefore f is 

completely continuous in view of theorem 6. 1. 

THEOREM 6.4. Every completely contz"nμ0%S Z·ηtage 01 a nearly compact space z.s 

compact. 

PROOF. Let f: X • Y be a completely continuous mapping of a nearly compact 

space X onto a space Y. Let {U a : αEA} be any open covering of Y. Thus, 

ff-1(Uα) : αεA} is a regular open covering of X. There exists therefore a finite 

subcover {f-1(Uαi) : 6=1, 2, …, %} of {f-1(Ua) : αεA} , It follows that {U a, : 

z"=1, 2, "., n} is a finite subcover of {Uα : αεA}. 

THEOREM 6.5. Let 1 be a closed, completely contz"nuous, almost-open maPþing 01 

a space X onto a space Y sμck that f-1(y) z·s c0%Pact fbr eack yεY. Then il X z.S 
nearly paracoηzpact， then Y z.S paracompact. 

• 
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PROOF. Let {U a : αεA} be any open covering of Y. Then {I一 l(U) : αεA} is 

a regularly open covering of X. Since X is nearly paracompact, therefore there 

exists a locally finite regular open refinement {Vβ :ßεA} of {f-1(U a) : αεA} . 
Consider the family {/(Vβ) : ßEA}. Since 1 is almost open, therefore each f(Vβ) 

is open. AIso, since 1 is closed such that 1 -l(y) is compact for each yεy， 
therefore {I(Vβ) : βεA} is locally finite. Thus {f(V ß) : ßEA} is a locally finite 

open refinement of {U a : αεA} and hence Y is paracompact. 

THEOREM 6.6. Let f be a comp!etely continμous， open maPPing 01 a nearly 

jba7ac0%ZFact space X 0%to a space Y SZtch that f-1(y) ts compact fO7 each yεY. Then 

Y is pointμlise paγacompact. 

PROOF. Let {U a : αεA} be any open covering of Y. Then {f-1(U): αεA} is 

.a regular open covering of X. Since X is nearly paracompact, therefore there 

.exists a locally finite open refinement {Vβ : βeA} of tf-l(Ua) : αEA}. It is easy 

to verify now that {f(V ß) : ßεA} is a point-finite open refinement of {Uα : αεA} 

Hence Y is pointwise paracompact. 

DEFINITION 6.3. [Singal and Singal, 11J. A space X is said to be mildly normal 

if every pair of disjoint regularly closed subsets of X can be strongly separated. 

THEOREM 6.7. If 1: X • Y be a comp!etely continuous closed maþψing 01 a 

mz"ldly normal space X onto a space y , then Y is normal. 

PROOF. Let A and B be any two disjoint closed subsets of Y. Then/-
1
(A) 

and f-1(B) are disjoint regularly closed subsets of X. Since X is mi1dly normal, 

therefore there exist disjoint open sets 0 A and OB such that 1-1
(A)CO A and 

f-l(B)c=OB· Let GA= {y : f-l(y)c=OA} and GB= {y : f-l(y)c=OB} • Then GA=Y-

f(X - 0 A) and GB=Y -/(X -OB). It follows that G A and GB are disjoint open 

sets containing A and B respectively. Hence Y is normal. 

DEFINITION 6.4. [Singal and Arya, 9J. A space X is. said to be almost-regμlar 

if for every regularly closed set F and a point x종F， there exist open set U and 

V such that xEU, FCV and unv=ø. 
THEOREM 6.8. 11 1 z.s a comp!etely conUnuous, closed mapping 01 an almost 

regztlm space X 0%to a space Y sxck tkat f-1(y) z·s c0%Pact fo7 each yεY， then Y 

is 7egμlar. 
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PROOF. Let F be a cIosed subset of Yand let Y종F. Then f-1(F) is a regularly 

closed subset of X such that f--l(y) nf-1(F) =￠. For each xεf-1(F) ， since f-1(F) 
1S a regularly closed set not containing x, therefore there e:tist disjoint open 

sets Ux and V x such that xεUx and f-l(F)IVx· Then {Ux : xεf-\Y)}is an open 

covering of f-1(y). Since f-\Y) is compact, therefore there exists a finite 
• n n 

S11bcover {Ux, : t=1 , 2, …, n} of {Ux : xεf ‘ (y)}. If U= 셀1UXt and V늑-딘l Vx,, 

then U and V are disjoint open sets containing f-1(y) and f-l(F) respec

tively. If M=Y - f(X-U) and N=Y -f(X-V) , then M and N are disjoint open 

sets such that yεM and FCN. Hence Y is regular. 
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