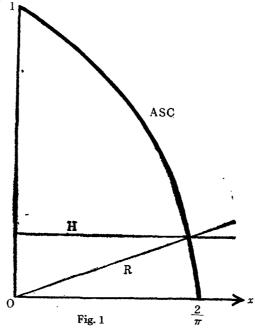
Bull. Korean Math. Soc. Vol. 11 (1974) pp. 35-37

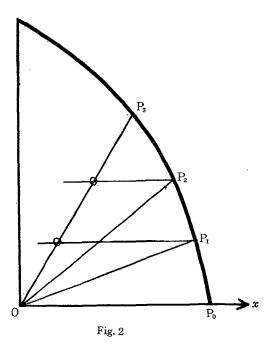
THE n-SECTIONING OF AN ANGLE

H.S. HAHN

The impossibility of trisecting an angle using ruler and compass alone is well-known. It is nevertheless possible to trisect an angle using methods other than ruler and compass ([1,3]), but simple techniques are not widely known. Here we present a method which can be used not only to trisect but also in fact to n-sect any angle.

In the x-y plane, imagine a horizontal line H while it moves from the y=0 to y=1 position at a constant speed, simultaneously a ray R from the origin O rotates counter-clockwise around O from the x-axis to the y-axis position at a constant angular speed. Call the curve of the intersection of the line H and the ray R created by the above motions the angle section curve or just ASC.





Since the equations of H and R are y=t and $y=x\tan(\pi t/2)$, respectively, in terms of a parameter t, varying from t=0 to t=1, the equation of the ASC is

(*)
$$y=x\tan(\pi y/2)$$
, and Fig. 1 shows this curve.

It is easy to see that if we can n-sect a right angle and any acute angle, then we can n-sect any angle greater than a right angle. Suppose θ is a given angle less than or equal to a right angle. Let P_0 denote the intersection of the ASC and the x-axis and let P_n be a point on the ASC such that $\angle P_nOP_0 = \theta$. (Actually $P_0 = (\frac{2}{\pi}, 0)$). To n-sect θ , we n-sect the segment OP_n and draw parallels, parallel to the x-axis, through these n-1 division points of OP_n , by routine methods using ruler and compass. If these parallels meet the ASC at P_1, P_2, \dots, P_{n-1} , in order of increasing heights toward P_n , the rays OP_i , $i=1,2,\dots,n-1$, are the desired n-secting lines of $\angle P_nOP_0 = \theta$, because as the moving line H at a constant speed passes through P_i and then P_{i+1} , the time elapsed will be 1/n th of the time required for H to pass from

the x-axis to P_n , and during the same time interval the ray R will have swept through 1/n th of the angle θ . Fig. 2 shows the trisection of θ .

Our method of n-sectioning of an angle is based on the construction of the ASC, and we can construct this curve by a computer with plotter or even a desk calculator with the card reader and hand plotting. Program in such a way to make a computer plots 10^m points whose coordinates are

 $(y\cot(\pi y/2), y)$, where $y=k/10^m$, $k=1, 2, \dots, 10^m$.

The exponent m depends on the degree of accuracy desired.

References

- [1] W.W. Rouse Ball, Mathematical Recreations and Essays, Macmillan Co., 11th Ed. 1960, pp. 333-335.
- [2] H.S.M. Coxeter, Introduction to geometry, John Wiley & Scns, 1961, p. 28.
- [3] H.M. Cundy and P.A.P. Rollett, mathematical Models, Oxford Univ. Press, 1961, pp. 228-231.
- [4] Howard Eves, A survey of geometry, Vol. 2, Allyn and Pacen, 1965, pp. 272-273.

West Georgia College