Bull. Korean Math. Soc. Vol. 11 (1974), pp. 11-13

ON THE W-SPACES

SUNG KI KIM

The object of this paper is to generalize the usual W-spaces [1] and by using the dual function $\rho_i^*(\eta_i)$ for a given function $\rho_i(x_i)$ on R, to show that the properties of the Fourier transform of the usual W-spaces also hold in this generalized W-spaces. In this note, notations based on [3].

Let $\rho_i(x_i)$ be strictly convex C^1 -function on R such that $\rho_i^{(x_i)}/_{|x_i|} \to \infty$ as $|x_i| \to \infty$. The dual function $\rho_i^*(\eta_i)$ of $\rho_i(x_i)$ is defined by $\rho_i^*(\eta_i) = \max_{i} [\eta_i x_i - \rho_i(x_i)]$. We use the notations $\exp \rho(x) = \exp [\rho_1(x_1) + \dots + \rho_n(x_n)]$ and $\exp \rho^*(\eta) = \exp [\rho_1^*(\eta_1) + \dots + \rho_n^*(\eta_n)]$ for $\rho(x) = [\rho_1(x_1), \dots, \rho_n(x_n)]$ and $\rho^*(\eta) = [\rho_1^*(\eta_1), \dots, \rho_n^*(\eta_n)]$.

Since $\eta_i = \rho_i'(x_i)$ is strictly increasing, there exists the inverse function $x_i = \rho'_i^{-1}(\eta_i)$ which is a strictly increasing function. Let $\rho_i'(x_i^0) = 0$ and $\rho_i'^{-1}(\eta_i^0) = 0$.

LEMMA. Defining
$$\psi_i(\eta_i) = \int_{\eta_i^0}^{\eta_i} \rho_i'^{-1}(v_i) dv_i - \rho_i(0)$$
, we have
 $\rho_i(x_i) + \psi_i(\eta_i) \ge \eta_i x_i$,

for any η_i and x_i .

Moreover for any η_i and x_i such that $\eta_i = \rho_i'(x_i)$, we have $\rho_i(x_i) + \phi_i(\eta_i) = \eta_i x_i.$

Proof. From $\rho_i(x_i) = \int_{x_i^0}^{x_i} \rho_i'(u_i) du_i + \rho_i(x_i^0)$

and

$$\psi_i(\eta_i) = \int_{\eta_i^0}^{\eta_i} \rho_i'^{-1}(v_i) dv_i - \rho_i(0),$$

we have

$$\rho_i(x_i) + \phi_i(\eta_i) \ge \eta_i x_i + \rho_i(x_i^0) - \rho_i(0) + \int_{\eta_i^0}^0 \rho_i'(u_i) du_i = \eta_i x_i.$$

The equality obviously holds in case $\eta_i = \rho_i'(x_i)$.

THEOREM 1. $\psi(\eta) = \rho^*(\eta)$.

S.K. Kim

Proof. For any given η_i , taking $x_i = \rho_i'^{-1}(\eta_i)$, $\psi_i(\eta_i) = \eta_i x_i - \rho_i(x_i) = \operatorname{Max}_{x_i}[\eta_i x_i - \rho_i(x_i)] = \rho_i^*(\eta_i)$.

THEOREM 2. If $\rho(x) \ge \rho^0(x)$ for $x \ge x^1$ (or $x \le x^1$), then $\rho^*(\eta) \le \rho^{0*}(\eta)$ for $\eta \ge \eta^1$ (or $\eta \le \eta^1$) where $\eta^1 = (\rho_1'(x_1^1), \dots, \rho_n'(x_n^1))$.

Proof. Taking $\eta_i = \rho_i'(x_i)$, by the above Lemma,

 $\rho_i(x_i) + \rho_i^*(\eta_i) = \eta_i x_i \leq \rho_i^0(x_i) + \rho_i^{0*}(\eta_i).$

From the above results, for any η , there exists only one x and for any x, there exists only one η such that $\rho(x) + \rho^*(\eta) = (\eta_i x_i)$. Hence we have the dual relation $\rho_i(x_i) = \max[x_i \eta_i - \rho_i^*(\eta_i)]$ [2].

We now define the generalized W-spaces.

For any $a=(a_1, \dots, a_n) > 0$, we denote by $W_{\rho,a}$ the space of all C^{∞} -functions $\varphi(x)$ on \mathbb{R}^n such that

 $|\partial^q \varphi(x)| \leqslant C_{qa'} e^{-\rho(a'x)}, \ (0 \leqslant |q| < \infty)$ for any a' < a,

where the $C_{qa'}$ are constants depending on φ .

 $W_{\rho n a}$ is a linear space with the topology in terms of the sequence of norms

$$\| \varphi \|_{p} = \sup \sup e^{e^{\lfloor \alpha (1-\frac{1}{p})x \rfloor}} |\partial^{\alpha} \varphi(x)|, \quad p = 1, 2, \dots,$$

and we know that W_{pa} is a perfect space [1].

We denote by W_{ρ} the union space of the spaces $W_{\rho a}$ $(0 \le a \in \mathbb{R}^n)$.

From the Theorem 1, $\rho_i^*(\eta_i)$ is a strictly convex function on R and $\rho_i^{*(\eta_i)}/_{|\eta_i|} \to \infty$ as $|\eta_i| \to \infty$ [2].

For any $b=(b_1, \dots, b_n) > 0$, we denote by $W^{\rho*,b}$ the set of all functions extendable into entire functions $\varphi(z)$ on C^n such that

$$(1+|z|^k) |\varphi(z)| \leq C_{kb'} e^{\rho * (b'\eta)}, \quad (0 \leq k \leq \infty) \text{ for any } b' > b$$

where the $C_{kb'}$ are constants depending on φ .

 $W^{\rho*,b}$ is a linear space with the topology in terms of the sequence of norms

$$\|\varphi\|_{p} = \sup_{z \in \mathcal{C}^{*}} (1+|z|)^{p} e^{-\rho \cdot \left\lfloor b \left(1+\frac{1}{p}\right)^{\frac{1}{p}}\right\rfloor} |\varphi(z)|, p = 1, 2^{\dots, n},$$

and a perfect space [1].

We denote by $W^{\rho*,b}$ the union space of the spaces $W^{\rho*,b}$ $(0 \le b \le R^n)$ and $W^{\rho*,b}_{\rho*,a}$ the space of all the functions in $W^{\rho*,b}$ such that

$$|\varphi(x+i\eta)| \leq C_{a'b'}e^{-\rho(a'x)+\rho*(b'\eta)}$$
, for any $a' < a, b' > b$.

In $W^{\rho*,*}_{\rho,\cdot,\cdot}$, a topology is defined in terms of the norms

$$\|\varphi\|_{p} = \sup_{z \in \mathcal{C}^{*}} |\varphi(z)| e^{\rho \lfloor a \left(1 - \frac{1}{p}\right) \cdot z \rfloor - \rho^{*} \lfloor b \left(1 + \frac{1}{p}\right) \cdot y} \rfloor, \quad p = 1, 2, \dots$$

12

On the W-spaces

We denote by W_{ℓ}^{**} the union space of W_{ℓ}^{**} : $(0 \le a \in \mathbb{R}^n, 0 \le b \in \mathbb{R}^n)$. If each $\rho_i(x_i)$ has the minimum 0 at O, our definitions of W-spaces are same as the definitions of the usual W-spaces.

We obtain the following results with the proofs similar to those in $\lceil 1 \rceil$.

THEOREM 3. Fof any a>0, b>0, $\mathcal{F}[W_{\rho\sigma a}] = W^{\rho*,1/a}$, $\mathcal{F}[W^{\rho*,b}] = W_{\rho_1/b}$.

COROLLARY. $\mathcal{F}[W_{\rho}] = W^{\rho*}, \ \mathcal{F}[W^{\rho*}] = W_{\rho}.$

THEOREM 4. $\mathcal{F}[W_{b,a}^{\rho*,b}] = W_{\rhob,a}^{\rho*,1/a}$.

COROLLARY. $\mathcal{F}W_{*}^{*}=W_{**}^{*}$.

If u is in ρS , the Fourier-Laplace transform of u is an entire function $F_u(\xi + i\eta)$ such that for any N and m, we can take a constant $C_{N,m}$, with which we have

$$(1+|\xi+i\eta|)^N|\partial_{\xi}{}^{m}F_{u}(\xi+i\eta)| \leq C_{N,m}e^{\rho*(\eta)} [2].$$

Hence we obtain the following

THEOREM 5. For u in $_{\rho}S$, the Fourier transform of u belongs $W^{\rho*,b}$, for any $b>1=(1, \dots, 1)$.

References

- [1] Friedman A., Generalized functions and partial differential equations, Prentice-Hall, Inc., 1963.
- [2] Hayakawa K., Some results on the Fourier-Laplace image of special classes of distributions, Osaka J. Math. 9 (1972).
- [3] Sung Ki Kim, On the Fourier-Laplace image of some classes of functions and distributions. J. Korean Math. Soc. Vol. 11, No. 1, (1974)

Seoul National University