ON THE STRUCTURE OF &BARRELLED SPACES

by

Dong hwa Kim

Korea University, Seoul, Korea

1. Introduction

Let E be a real or complex locally convex Hausdorff topological vector (abbreviated to locally convex) space and let E' denote its dual.

A locally convex space E is said to be barrelled if every closed, balanced, convex, absorbing subset of E is a neighborhood of O or equivalently, if every $\sigma(E,E')$ bounded subset of E' is equicontinuous.

A locally convex space E is said to be ω -barrelled if every countable $\sigma(E, E')$ —bounded subset of E' is equicontinuous. In this paper, we study the structure of ω -barrelled space.

2. Main Theorem

Proposition 1. Every barrelled locally convex space is ω -barrelled.

Proof: It is immediate from the definition since every $\sigma(E,E')$ —bounded set in a barrelled space E is equicontinuous.

Corollary: Every Fréchet space (in particular Banach space) is w-barrelled.

Proposition 2. ω -barrelled topology is stronger than the weak topology $\sigma(E, E')$.

Proof: Since the weak topology $\sigma(E,E')$ is the S-topology, where S is all subsets of E' consisting of finite elements. The neighborhood of O in E for the weak topology is a neighborhood of O in ω -barrelled space E.

Theorem: A locally convex space E is ω -barrelled if and only if each Larrel B which is the countable intersection of convex, circled and closed neighborhood of O in $(E, \sigma(E, E'))$ is itself a neighborhood of O in E.

Proof: Suppose that E is ω -barrelled. Let $B = \bigcap_{n=1}^{\infty} U_n$ be a barrel such that each U_n is a convex, circled, and closed neighborhood of O in E for the topology $\sigma(E, E')$. We can assume that $U_n = A_n^{\circ}$, where A_n is finite subset of E'.

Then

$$B^{\circ} = \left(\bigcap_{n=1}^{\infty} U_{n}^{\circ \circ}\right)^{\circ} = \left(\bigcup_{n=1}^{\infty} U_{n}^{\circ}\right)^{\circ \circ} \supset \bigcup_{n=1}^{\infty} U_{n}^{\circ} = \bigcup_{n=1}^{\infty} A_{n}^{\circ \circ} \supset \bigcup_{n=1}^{\infty} A_{n}$$

Since B is a barrel and hence absorbing, B° is $\sigma(E,E')$ -bounded and so is $\bigcup_{n=1}^{\infty} A_n$.

Since E is ω -barrelled, it follows that $\bigcup_{n=1}^{\infty} A_n$ is equicontinuous.

Therefore.

$$\left(\bigcup_{n=1}^{\infty} A_n\right)^{\circ} = \bigcap_{n=1}^{\infty} A_n^{\circ} = \bigcap_{n=1}^{\infty} U_n = B$$

is a neighborhood of O in E.

For the converse, suppose the condition is satisfied. Let A be a countable $\sigma(E,E')$ —bounded subset of E'.

Ιf

$$\mathbf{A} = \bigcup_{n=1}^{\infty} \{\mathbf{f}_n\},\,$$

then it follows

$$B = A^{\circ} = \left(\bigcup_{n=1}^{\infty} \{f_n\}\right)^{\circ} = \bigcap_{n=1}^{\infty} \{f_n\}^{\circ}$$

is a barrel in E. And $\{f_n\}^{\circ}$ is a neighborhood of O. Hence B, being a barrel which is the countable intersection of convex, circled and closed neighborhood of O in E' for the topology $\sigma(E,E')$.

B°=A°° is equicontinuous.

But then $A \subset A^{\circ \circ}$ implies that A is equicontinuous. This proves that E is ω -barrelled.

References

- 1. Taylor, A.E; Introduction to Functional Analysis, Wiley, New York (1958)
- 2. John Horváth; Topological Vector Spaces and Distributions Vol.1. Addison-Wesley Pub. Co. (1966)
- 3. Husain, T; Two new classes of locally convex spaces. Math. Ann. 166, (1966)
- 4. S.Saxon and M.Levin; A note on the inheritance of properties of locally convex spaces by subspaces of countable codimension, Proc. Amer. Math. Soc. 29 (1971)

P. 25에서	계속
---------	----

留意해야 한다.

前述한바 바람직한 人間의 形成이라는 立場에서 算數科의 位置와 그 重要性을 共感하고 熱意를 다하여 教育目標達成에 努力함으로써 算數教育의 成果를 期待해야 할 것이다.

参考文獻

- 文教部 國民學校 教育課程
- 具光祖, 李正實 算數教育 古今文化社

- 具光祖外 初等數學教育의 現代化에 따른 教育內容의 改善 및 教師教育에 關한 研究 ホ 誌 通卷 24 號
- 學校教育全書 數學教育 日本全國教育圖書 株式會社
- 川口廷外 算數教育現代化全書 日本 金子園 房

(서울 教育大學)