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ON INVERSE LIMIT SYSTEMS AND CANTOR SET
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We know that the Cantor set is totally disconnected, compact, perfect, and metric. In this
paper, we will make use of the results in the following lemmas and the concept of an inverse
limit system to prove that every two such totally disconnected compact metric spaces are
homeomorphic and hence will have a topological invariant property of the Cantor set.

Lemma 1. Let U be an arbitrary open covering of a metric space M and let n be an arbitrary
integer, Then there is a refinement V of U composed of open sets with the property that each
diameter is less than 1/n. If M is finite, then V can be taken to be finite.

Lemma 2. Let C be a component of a compact Hausdorff space and U be an arbitrary open
set containing C. Then there is an open set V such that it contains C, is contained U, and has
an empty boundary. Furthermore, the open set V is also closed.

Lemma 3. A one-to-one continuous mapping of a compact space X onto a compat space Y
is a homeomorphism.

Theorem 1. If M is totally disconnected, compact, and metric, then there is a countable
sequence Uj, Us,...... of finite coverings where each U, is a collection of disjoint sets of diameter
(less than 1/n) that are both open and closed and Usy; is a refinement of U, for each n.

Proof: Since a metric space is Hausdorff, from Lemma 2 we can obtain the results that if C
is a component (a single point in this case) of M and if G is any open set containing C, then
there is a closed and open set which contains C and is contained in G. From Lemma 1, we
obtain the following results. Let Up be a covering of M. Each point of M belongs to some open °
set which is an element of U, since Up is a covering of M. If G is an element of Up containing
x for each x in M, then there is a closed and open set H; of diameter(<C1) which contains x
and is contained in G And then {H.} is a covering of M and since M is compact, {H,} has
a finite subcovering {H:li=1,2,......,n}, where each H; is not necessarily disjoint. Consider the
sets Gi=Hi;, Ga=Hs—Hi, ....0., G;=Hi—~ (U{ziH;). Then each G; is open and closed, and each
G; is disjoint, for given G; and Gj, i<j, Gi is a subset of H;, and G; is a subset of M—H.
We have diameter Gi=diameterV;<{l. Let U;={G;}. By the general inductive step, it is
obvious that we have a countable sequence Uj, Ug....uus

Theorem 2. Let M be a compact totally disconnected metric space. Then M is homeomorphic
to the inverse limit space of an inverse limit sequence of finite, discrete spaces.

— 15—~



Proof: Let U;, Us,......be the same sequence of coverings ae defined in the above Theorem
1. For each positive integer n, let U,* be the discrete topological space whose points are the
open sets of Uy, i.e., Un* is the collection of sets U, that has a discrete topology. Define a
continuous mapping fa:Up*—Up_1* (n>>1) as follows., If G, is an element of U, then there is
a unique element Gu_y, ; of Ua-y containing Gn, ;i because the elements of U,_; are disjoint and
Un is a refinement of Up_i. Let fu(Gn,:) =Gn_1,; then each f, is continuous since U,* is discrete.
By the above definition, {Us*, fa} is an inverse limit sequence of compact, Hausdorff spaces,
and then the inverse limit space U. of {Ua*, fa} is not empty. Next, we may define a mapping
h:U.—M which is a homeomorphism. If p=(Gi, ni, Gz, nz,...... ) is a point of U, then each
Ui, ni is a closed subset of M and Gi, ni contains Giyi, nisy for each positive integer i. Since
M is compact and {Gi,ni| i is natural} is a family of sets satisfying the finite intersection

property, the intersection {; Gj, n; is not empty. Since the diameter of G, n; is less than

1/i, N5z Gj, nj is a singleton set. Define this point as q. Let h(p)=q. Then h is one-to-one.
For, if p is a point of U, then h(p) is in each of the point sets in M that are coordinate of
p. Hence if two points p and p’ of U, differ in the n th coordinate, then h(p)3xh(p’) because
the elements of U, are disjoint, The mapping h is onto because h(p) =q is in the intersection
of such sequence of closed subsets of M. Note that the collection of sets {Gj, ;} is a basis for
the topology of M. Since, for each Gj, i of Uj, h1(G;,i) consists of all points of U. having
Gj, i for their j th coordinate and the point Gj, ; of L?,-is open in G,-, h~1(Gj, ;) is open in
U.. Thus h is continuous. By lemma 3, h is a hemeomorphism since U.. is compzct, Hausdorff.

Theorem 3. Let G “e an open set of a totally disconnected and perfect topological space.
For each positive integer n, then G is a union of n disjoint nonempty open sets.

Proof: It is obvious for n=1. Suppose that it is true for n=k, i, e., G=GUG:U...... UGk
where G; is open, nonempty, and disjoint. Each G is not connected since the given space is
totally disconnected and a single point is not open. Hence each G is decomposed into two
disjoint open sets Gj,1 and Guz and then Gi,i, Gi,2 are open in the given space since Gi is
open in the space. Therefore, G;,Gy,..., Gx1 G2 is a decomposition of G for n=k+1. By the
mathematical induction, the given assertion is true for any n.

Theorem 4. Any compact totally disconnected perfect metric space is homeomorphic to the
Cantor set.

Proof: We know that the Cantor set is compact totally disconnected perfect metric space.
Thus we are necessarily only to show that any two compact totally disconnected perfect metric
spaces are homeomorphic. Let S and T be compact totally disconnected perfect metric spaces,
and let Uy, Us...... and Vi, Vy,...... be countable sequences of coverings of S and T, respectively,
where Us= {Gp,1y-..... , Gronr), Vi= {Hgiy...... »He,ms}, as produced in the proof of Theorem 2.
If nyj=m;, then we define U';=U; and V/;=Vi. If n;>m;, then we may decompose Vi,1 into
n;—mi+1 disjoint open (and closed) sets by using Theorem 3 and define U;=U1 and V;:
{Vi,2.0eeee , Vi, m1) U (W, Wa,...... ,Wai—m+1), where {W;} is the decomposition of Vi,;. Similar
method may be applied in the case my<<mi.

r ?
Assume that U ;and V ; have been defined so as to have the same number of elements.



! ’ ’
Since the elements of U ;= {G j4,......,G j, n;} are mutually disjoint closed sets, there is a natural
! ’
number m(C>j) such that no set of diameter 1/m intersects any two G ;i For V ;, there is also
!
a similar natural number m’. Let m=max {m, m'}, then Un is a refinement of U jand Vn is a

refinement of V. j» Consider the elements of Uy in G',j,,- and the elements of Vp in H j»i for each
i. If there are the same number of these elements for a given i, then we leave them unaltered.
But, for example, if there are more elements of Uy in G jyi than elements of V, in Hl js iy then
we use Theorem 3 to decompose one of the elements of Vn, so as to have the same number of

’ !
elements. By repeating such process we can obtain coverings U ;41 and V j,ifor each i=n;, where
’ 1] ? ’ ! ’
U js1and V j,; are refinements of U ; and V j, respectively. For each i, the sets G j; and H

iri
have the same number of elements in U’,-+1 and V’j+1, respectively. Thus, by repeating the above
process, we can obtain two countable sequences Ull, U'gyeeneen and V'1V'a...... Let Ux*, U*z,... and
VT, \7';, ...... be the associated sequences of discrete topological spaces as defined in the proof of
Theorem 2. We may define a mapping ©: {U:} -—>{V:} by induction also. For n=1, let ¢ Ué:
—»VT be an arbitrary one-to-one correspondence. Assume that @a_;: Ut-nﬁ\;:_x be defined as an
arbitrary one-to-one correspondence, let ¢n: U:—-»Vi be defined by assigning to each G*,,,j in UT.
an element of Vt belonging (Dn_l(f,.(Gln, 7)), where f. is the projection of U’,, into U’,,_l. Let &

* *
== {pa}, then it is easy to see that @ is a mapping of {Un, fa} into {Va, g} and each ¢. is a
homeomorphism. If @u:Us—Ve is a aapping induced by @, then it is a homeomorphism and S
is homeomorphic to T since, by Theorem2, U. and V. are homeomorphic to S and T, respec-
tively.

References

1. Hocking, J.C., and Young, G.S., Topology. Addison-Wesley, Reading, Mass., 1961.
2. Kelley, J.L., General Topology. Van-Nostrand, New York, 1955.
3. Wallace, A.H., Algebraic Topology. W.A. Benjamin, Inc., New York, 1970.

— 17—



