ON GENERALIZED INVERSE SPECTRUM

by

Jai Eung Kong

Yonsei University, Seoul, Korea

We can extend the notion of an inverse spectrum to cover the case where more than one map between pairs of spaces is allowed. This extension is as follows:

Definition

Let A be a preordered set and $\{Y_{\alpha} | \alpha \in A\}$ be a family of spaces indexed by A. For each pair of elements α , β such that $\alpha < \beta$, let $\{\varphi_{\beta\alpha}^{\mu} | \mu \in M(\alpha, \beta)\}$ be a given nonempty family of continuous maps $\varphi_{\beta\alpha}^{\mu}: Y_{\beta} \to Y_{\alpha}$ which we will call connecting maps. The cardinality of $M(\alpha, \beta)$ need not be finite and may vary with (α, β) . Assume that whenever $\alpha < \beta < \gamma$, then each $\varphi_{\beta\alpha}^{\lambda} \cdot \varphi_{\gamma\beta}^{\mu}$ is also a connecting map. Then $\{Y_{\alpha}; \varphi_{\beta\alpha}^{\mu}\}$ is called a generalized inverse spectrum over A. Each generalized inverse spectrum yields a limit space:

Definition

Let $\{Y_{\alpha}; \varphi_{\beta\alpha}^{\mu}\}$ be a generalized inverse spectrum over A. Form $\{Y_{\alpha} | \alpha \in A\}$, and for each α , let P_{α} be its projection onto the α th factor. The subspace $\{y \in \Pi Y_{\alpha} | \alpha, \beta \in A : (\alpha < \beta) \Rightarrow [P_{\alpha}(y) = \varphi_{\beta\alpha}^{\mu} \cdot P_{\beta}(y)]$ for all $\mu \in M(\alpha,\beta)$ is called the generalized inverse limit space of the generalized inverse spectrum and is denoted by Y_{∞} or $\lim_{\alpha \to \infty} Y_{\alpha}$.

According to this definition, a point $y = \{y_{\alpha}\} \in \Pi Y_{\alpha}$ belongs to Y_{∞} whenever $\alpha < \beta$ implies $y_{\alpha} = \varphi_{\beta\alpha}^{\mu}(y_{\beta})$ for each $\mu \in M(\alpha, \beta)$. Since $\alpha < \alpha$ for each $\alpha \in A$, it follows that each coordinate y_{α} must actually belong to the subspace $A_{\alpha} = \{x \in Y_{\alpha} | \varphi_{\alpha\alpha}^{\lambda}(x) = x \text{ for each } \lambda \in M(\alpha, \alpha)\}$ of Y_{α} .

In fact, $\{A_{\alpha}; \varphi_{\alpha\beta}^{\mu} | A_{\beta}\}$ is itself a generalized inverse spectrum over A, since if $a_{\beta} \in A_{\beta}$, then for each pair $\alpha < \beta$ the formula $\varphi_{\alpha\alpha}^{\tau} \cdot \varphi_{\beta\alpha}^{\mu}(a_{\beta}) = \varphi_{\beta\alpha}^{\mu}(a_{\beta})$ shows $\varphi_{\beta\alpha}^{\mu}(a_{\beta}) \in A_{\alpha}$ for each $\lambda \in M(\alpha, \alpha)$ and $\mu \in M(\alpha, \beta)$ and it is easy to see that the two subspaces A_{∞} and Y_{∞} of IIY_{α} are the same.

The elements of Y_{∞} are also called threads; note that each threads has a unique representative in each Y_{α} , but that an element of Y_{α} may represent many threads. The restriction $P_{\alpha}|Y_{\infty}:Y_{\infty}\to Y_{\alpha}$ is denoted by φ_{α} and is called the canonical map of Y_{∞} into Y_{α} . It is evidently continuous,

and two threads x,y are the same if and only if $\varphi_{\alpha}(x) = \varphi_{\alpha}(y)$ for every $\alpha \in A$.

Now, we can obtain the following results.

THEOREM. (1) Whenever $\alpha < \beta$, the diagram

is commutative for each $\mu \in M(\alpha, \beta)$.

- (2) If A is a directed set, then the sets $\{\varphi_{\alpha}^{-1}(U) \mid \text{all } \alpha, \text{ all open } U \subset Y_{\alpha}\}$ form a basis for Y_{∞} -**PROOF:** (1) is obvious.
- (2) Let $x \in V$, where V is open in Y_{∞} . Since Y_{∞} is a subspace of $I\!\!I Y_{\alpha}$, there are finitely many open $U_{\alpha_i} \subset Y_{\alpha_{i_1}}$ $i=1,\ldots,n$ such that $x \in \langle U_{\alpha_1},\ldots,U_{\alpha_n} \rangle \cap Y_{\infty} \subset V$.

We are to show that for some suitable α and open $U \subset Y_{\alpha}$, $x \in \varphi_{\alpha}^{-1}(U) \subset \langle U_{\alpha_1}, \ldots, U_{\alpha_n} \rangle \cap Y_{\infty}$. Because A is directed, we first choose α so that $\alpha_1, \ldots, \alpha_n < \alpha$, and then define $U = \bigcap_{1}^{n} \varphi_{\alpha \alpha_i}^{-1}(U_{\alpha_i})$, which is open in Y_{α} . Now, according to (1), we have $\varphi_{\alpha}^{-1}(U) = \bigcap_{1}^{n} \varphi_{\alpha \alpha_i}^{-1}(U_{\alpha_i}) = \bigcap_{1}^{n} \varphi_{\alpha \alpha_i}^{-1}(U_{\alpha_i})$, so that a $y \in Y_{\infty}$ belongs to $\varphi_{\alpha}^{-1}(U)$ if and only if its α_i th coordinate lies in U_{α_i} for each $i = 1, \ldots, n$; consequently, $y \in \varphi_{\alpha}^{-1}(U) \subset \langle U_{\alpha_1}, \ldots, U_{\alpha_n} \rangle \cap Y_{\infty}$, as required.

THEOREM. Let $\{Y_{\alpha}; \varphi_{\beta\alpha}^{\mu}\}$ be an inverse spectrum over A.

- (1) If each Y_α is Hausdorff, then Y_∞ is closed in ΠY_{α} .
- (2) If each Y_{α} is compact, then Y_{∞} is compact.

PROOF: (1) Let $y = \{y_{\alpha}\} \in (\Pi Y_{\alpha}) - Y_{\infty}$. Then $\varphi_{\beta\alpha}^{\mu}(y_{\beta}) = y_{\alpha}$ for some pair $\alpha < \beta$ and for each $\mu \in M(\alpha, \beta)$.

Because Y_{α} is Hausdorff and $\varphi_{\beta\alpha}^{\mu}$ is continuous, we can find neighborhoods $U_{\alpha}(y_{\alpha})$, $U_{\beta}(y_{\beta})$ such that $U_{\alpha} \cap \varphi_{\beta\alpha}^{\mu}$ (U_{β}) = ϕ , and then is a neighborhood of y not meeting Y_{∞} .

(2) is an immediate consequence, since $I\!\!I Y_\alpha$ is compact.

References

- 1. Bourbaki, N., General Topology, Parti. Addison-Wesley Publishing Company, Mass., 1966,
- 2. Dugundji, J., Topology. Allyn and Bacon, INC., Boston, 1966.
- 3. Wallace, A.H., Algebraic Topology. W.A. Benjamin, Inc. New York, 1970.