GENERALIZED INTEGRALS OF UNIVALENT FUNCTIONS

by

Y.J. Kim and T.S. Song¹

Air Force Academy, Seoul, Korea Seoul National University, Seoul, Korea

1. Introduction

Let S denote the class of functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ that are analytic and univalent in the open unit disk $D = \{z : |z| < 1\}$. Let K, S^* , and C denote respectively the subclasses of S whose members are convex, starlike relative to the origin, close-to-convex $\{1\}$.

Let α be a point in *n*-dimensional real Euclidean space E^n . M.R. Ziegler (4) proved that for the functions $f_k(z) \in K(k=1, 2, ..., n)$, the function defined by

$$g_{\alpha}(z) = \int_{0}^{z} \prod_{k=1}^{n} (f_{k}(t)/t)^{\alpha} dt, \quad \alpha = (\alpha_{1}, \dots, \alpha_{n})$$

is in K if α_k are positive and $\sum_{k=1}^n \alpha_k \leq 2$. It is also a generalization of the result that Y.J. Kim and E.P.Merkes has proved in (2). Moreover, the result is sharp. Sharpness here means that for each point α in E^n which is not restricted in the result, there exist function $f_k \in K$ such that the corresponding g_{α} is not in K.

In this paper, we investigate the univalence of functions of various integral types.

2. Convexity result.

We denote the functions g_{α} and G_{α} by the integral forms, respectively,

(1)
$$g_{\alpha}(z) = \int_{0}^{z} \prod_{k=1}^{n} (f_{k}(t)/t)^{a_{k}} dt$$

and

(2)
$$G_{\alpha}(z) = \int_{0}^{z} \prod_{k=1}^{n} (f'_{k}(t))^{\alpha} dt$$

where $\alpha = (\alpha_1, \dots, \alpha_n) \in E^n$, and each $f_k \in S$.

Suppose g_{α} and g_{β} (or G_{α} and G_{β}) are in one of the classes K and C. The first question that we consider is whether or not this implies g_{α} and g_{β} (or G_{α} and G_{β}) are in the same class for all the points in the line segment joining α and β in the E^n -space.

^{1.} The autors are supported by Dong-A Natural Science Foundations.

Theoren1. The region in the E^{n} -space where the functions (2) are in one of the classes K or C for all choices of $f_{k}(k=1, 2, \ldots, n)$ in S is a convex region.

Proof. Suppose the function (2) is in K (or C) for two points α and β in E^n when f_k are given in S.

Define.

$$H_{\lambda}(z) = \int_0^z (G'_{\alpha}(t)) (G'_{\beta}(t))^{1-\lambda} dt, \quad (0 \leq \lambda \leq 1).$$

By a theorem (2), we know that if G_{α} and G_{β} belong to K (or C), then the function H_{λ} is in K (or C).

However, we have

(3)
$$H_{\lambda}(z) = \int_{0}^{z} \prod_{k=1}^{n} (f_{k}'(t))^{\lambda \alpha_{k} + (1-\lambda) \beta_{k}} dt$$

= $G_{\lambda \alpha_{+} (1-\lambda) \beta_{+}}$

where $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$ are in E^n .

The equality (3) means that if the functions G_{α} and G_{β} are in K(or C), then the function (2) belongs to the class K (or C) for all the points in the E^{n} -space joining these points by a line segment. This completes the proof of the theorem.

We remark here that the analog of Theorem 1 for functions of the form (1) can be proved by the similar methods to Theorem1.

3. The main theorems.

The problems to be considered in this section are the close-to-convexity of the functions defined by (1) and (2).

Note that

(4)
$$1 + \frac{zg_{\alpha''}(z)}{g'_{\alpha}(z)} = 1 - \sum_{k=1}^{n} \alpha_k + \sum_{k=1}^{n} \alpha_k \frac{zf_k'(z)}{f_k(z)}$$

and

(5)
$$Re\left\{1 + \frac{zG_{\alpha''}(z)}{G'_{\alpha}(z)}\right\} = 1 - \sum_{i=1}^{n} \alpha_k + \sum_{k=1}^{n} \alpha_k Re\left\{1 + \frac{zf_k''(z)}{f_k'(z)}\right\}$$

Theorem 2. Let f_k (k=1, 2, ..., n) be in the class K. Then the function $g_{\alpha} \in K$ if $0 \le \alpha_k \le 2$ and $\sum_{k=1}^n \alpha_k \le 2$.

Proof. First, take $\alpha_k \neq 0$ and $\alpha_j = 0$ $(j \neq k)$. Then

$$\sigma_{\alpha} = \int_{0}^{2} (f_{k}(t)/t)^{\alpha_{k}} dt.$$

Hence for $\alpha_k \ge 0$

(6)
$$Re\left\{1+\frac{zg^{\prime\prime}_{\alpha}(z)}{g^{\prime}_{\alpha}(z)}\right\}=1+\alpha_{k}+\alpha_{k}Re\left\{\frac{zf_{k}^{\prime}(z)}{f_{k}(z)}\right\}$$

is nonegative if $0 \le \alpha_k \le 2$ since $Re\{zf_k'(z)/f_k(z)\} \ge 1/2$ for all $f_k \in K$.

Let us take the function $f_k=z/(1+z)$. Then $Re\{zf_k'(z)/f_k(z)\}=Re\{1/(1+z)\}$. Hence (6) does not hold when $\alpha>2$ or $\alpha<0$. This proves the boundaries $0\leq\alpha_k\leq2$ $(k=1,\ldots,n)$ are sharp. Next, it follows from (4) that

$$Re\left\{1+\frac{zg^{\prime\prime}_{\alpha}(z)}{g^{\prime}_{\alpha}(z)}=1-\sum_{k=1}^{n}\alpha_{k}+\sum_{k=1}^{n}\alpha_{k}\ Re\left\{\frac{zf_{k}^{\prime}(z)}{f_{k}(z)}\right\}$$

which is nonnegative provided $\sum_{k=1}^{n} a_k \leq 2$. For the sharpness, let $f_k = z/(1+z)$. Then

$$g_{\alpha}(z) = \int_0^z \frac{dt}{(1+t) \sum_{k=1}^n \alpha^k}$$

and by the second part of lemma 3 (2), this function is in K if and only if $0 \le \sum_{k=1}^{n} \alpha_k \le 2$. This completes the proof of theorem

Theorem 3. Let f_k (k=1, 2, ..., n) be in K. Ten the function $g_\alpha \in C$ if α belongs to the convex region bounded by $-1 \le \alpha_1$, α_2 , ..., $\alpha_n \le 3$ for arbitrary choice of j and k $(j \ne k)$, $-1 \le \alpha_j + \alpha_k \le 3$, ..., and $-1 \le \sum_{k=1}^n \alpha_k \le 3$. The result is sharp.

Proof. We prove the theorem by induction. The theorem is true trivially when n=1 (3). Assume that the theorem is satisfied in the n-1 dimensional case, i.e., without loss of generality we assume by symmetry that the theorem is true when α belongs to the convex region which is bounded by

$$-1 \leq \alpha_1, \dots, \alpha_{n-1} \leq 3$$

$$(7) \quad -1 \leq \alpha_1 + \alpha_2, \quad \alpha_1 + \alpha_3, \dots, \alpha_{n-2} + \alpha_{n-1} \leq 3$$

$$-1 \leq \alpha_1 + \dots + \alpha_{n-1} \leq 3$$

Combining together with the condition (7) and the condition in case which n=1, we have

$$-1 \leq \alpha_1, \dots, \alpha_n \leq 3,$$

$$-1 \leq \alpha_1 + \alpha_2, \dots, \alpha_{n-1} + \alpha_n \leq 3,$$

$$-1 \leq \alpha_1 + \alpha_2 + \dots + \alpha_n \leq 3$$

For sharpness, for example, let us take a point $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_j, 0, \dots, 0) \in E^n$ such that $-1 \le \alpha_1 + \alpha_2 + \dots + \alpha_j \le 3$. Then the restrictions on $\alpha_1, \dots, \alpha_j$ are established by setting $f_k(z) = z/(1+z)$ $(1 \le k \le j)$.

We also can obtain the following analogous theorems for functions of the form (1);

Theorem 4. Let f_k $(k=1,\dots,n)$ be in S^* . Then

- (i) the function $g_{\alpha} \in K$ if the point $\alpha \in E^n$ belongs to the convex region which is bounded by $0 \le \alpha_1, \dots, \alpha_n \le 1, \sum_{k=1}^n \alpha_k \le 1$
- (ii) the function $g_{\alpha} \in C$ if the point $\alpha \in E^n$ belongs to the convex region which is bounded by $-1/2 \le \alpha_1, \dots, \alpha_n \le 3/2$

$$-1/2 \leq \alpha_1 + \alpha_2, \dots, \alpha_{n-1} + \alpha_n \leq 3/2$$

$$-1/2 \stackrel{:}{\leq} \alpha_1 + \alpha_2 + \dots + \alpha_n \leq 3/2$$

In each case, the result is sharp.

Next, we consider the function G_{α} defined by (2).

Theorem 5. Let $f_k \in K$ (k=1,...,n). Then

- (i) the function G_{α} in K when $\alpha \in E^n$ belongs to the closed convex region which is bounded by (8) $0 \le \alpha_1 \cdots, \alpha_2, \alpha \le 1, \sum_{k=1}^n \alpha_k \le 1$
- (ii) the function G_{α} is in C when $\alpha \in E^{n}$ belongs to the closed convex region which is bounded by $-1/2 \le \alpha_{1}, \dots, \alpha_{n} \le 3/2$,

(9)
$$\begin{array}{l}
-1/2 \leq \alpha_1 + \alpha_2, \alpha_1 + \alpha_3, \dots, \alpha_{n-1} + \alpha_n \leq 3/2 \\
\vdots \\
-1/2 \leq \alpha_1 + \alpha_2 + \dots + \alpha_n \leq 3/2
\end{array}$$

The results are sharp

- **Proof.** (i) If $f_k \in K(k=1,\dots,n)$, then $zf_k' \in S^*$. By Theorem 4 (i), we know that $G_\alpha \in K$ if and only if α belongs to the region is bounded by the condition (8). The sharpness follow by considering the function (2) obtained by the combining z/(1+z) with itself or with z for the choices of f_k .
- (ii) In the same way as (i), we have by Theorem 4 (ii), $G_{\alpha} \in C$ iff $\alpha \in E^n$ belongs to the region which is bounded by the condition (9). The sharpnesses come from considering the same functions as (i).

References

- 1. W.Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1(1952), 169-185.
- 2. Y.J.Kim and E.P.Merkes, On certain convex sets in the space of locally schlicht functions, Trans. Amer. Math. Soc. 197(1974).
- 3. E.P.Merkes and D.J.Wright, On the univalence of a certain integral, Proc. Amer. Math. Soc. 27(1971), 97-100.
- 4. M.R.Ziegler, Some integrals of univalent function, Indian J.Math. 11(1969), 145-151.