A CHARACTERIZATION OF LOCAL COMPACTNESS

bу

Bae-Hoon Park

Gyeongsang National University, Jinju, Korea

It is shown that the cluster set of a net in a Hausdorff space X is a continuous function of the net if and only if X is locally compact. Our result should be compared with that of Fuller (3).

For a net (x_{λ}) in a topological space X the cluster set of (x_{λ}) is the set of all cluster points of (x_{λ}) , we will denote the cluster set of (x_{λ}) by $\alpha(x_{\lambda})$.

For a set X and subset U of X, P(X) is the set of all nonempty subsets of X and R(U, X) is the family of all nonempty subsets of X which intersect U.

If X is a topological space, the lower semifinite (lsf) topology on P(X) has as a subbasis all sets of the form R(U, X) where U is open in X.

We will denote all nets in a topological space X which have nonempty cluster sets by X^* .

Let D be a directed set. The terminal set T_{λ_0} determined by $\lambda_0 \in D$ is $\{\lambda \in D \mid \lambda_0 \leq \lambda\}$.

The net space $X^{\#}$ will be assumed to carry the topology which has as a subbasis all sets of the form

$$\mathfrak{U}^* = \{(x_l) \in X^* \mid \forall T_{l_2} \ \varphi(T_l) \cap U \neq \emptyset\},$$

where U is open in X and φ is net (x_1) defined on D.

Theorem 1. The following four properties are equivalent

- (1) X is locally compact.
- (2) For each $x \in X$ and each neighborhood U(x), there is a relatively compact open V with $x \in V \subset \overline{V} \subset U$.
- (3) For each compact C and open $U \supset C$, there is a relatively compact open V with $C \subset V \subset \overline{V} \subset U$.
- (4) X has a basis constisting of relatively compact open sets.

Proof: See the proof of XI 6.2 in (2).

Theorem 2. Let X be a Hausdorff space and P(X) have (1sf) topology.

Then the cluster set function $\alpha: X^* \to P(X)$ is continuous if and only if X is locally compact.

Proof: Assume X is locally compact. Let (x_{λ}) be in X^* and R(V, X), where V is open in X, be a subbasic neighborhood of $\alpha(x_{\lambda})$. Then for some p in $\alpha(x_{\lambda})$, p is also in V. Hence there is a compact neighborhood U of p contained in V.

Consider the neighborhood of (x_{δ}) , \mathbb{U}^* and let (x_{σ}) be in this neighborhood. Then the net $(x_{\sigma})_u$ consisting of the terms of (x_{σ}) in U is subnet of (x_{σ}) . Since U is compact, $(x_{\sigma})_u$ must have a cluster point x in U. So (x_{σ}) have a cluster point x in U.

Thus $\alpha(x_{\sigma}) \cap U \neq \phi$. Hence $\alpha(x_{\sigma}) \subseteq R(V, X)$. Therefore α is continuous.

Assume X is not locally compact. There is then a point p in X such that no neighborhood of p is compact. Hence for every neighborhood U of p, there is a net (x_u) in U which has no cluster point.

Let (p) be net such that $x_{\lambda}=p$ for each $\lambda \in D$.

If W^* , where W is open, is a subbasic neighborhood of (p). Then W is a neighborhood of p. Note $\alpha(p) = p$.

Now let R(V, X), where V is open, be a subbasic neighborhood of $\alpha(p)$, so that V is a neighborhood of p.

For each neighborhood U of p, whenever $(x_u) = (x_{u\alpha}, x_{u\beta}, x_{u\gamma}, \dots)$ and $x_0 \in X - V$, Consider the net $(x_u, x_0) = (x_0, x_{u\alpha}, x_{u\beta}, x_0, x_{u\gamma}, \dots)$ which has cluster set $\alpha(x_u, x_0) = x_0$.

Let \bigwedge be neighborhood system at p, Then the order relation $U_1 \leq U_2$ iff $U_2 \subset U_1$ directs \bigwedge . If W^* be a subbasic neighborhood of (p), $(x_u, x_0) \in W^*$ for $U \subset W$. Thus the net of nets (x_u, x_0) converges to (p). But $\alpha(x_u, x_0)$ does not belong to R(V, X) for any U. Therefore $\alpha: X^* \to P(X)$ is not continuous.

References

- (1) Steephen Willard, General Topology, Addison-Wesley Publishing Co., 1970.
- (2) James Dugundji, Topology, Allyn and Bacon, Inc, Boston, 1966.
- (3) R.V.Fuller, A Characterization of Local Compactness, Proc. Amer. Math. Soc.37 (1973), 615-616.