ON FUNCTIONS STARLIKE WITH RESPECT TO SYMMETRIC POINTS

by

Suk-Young Lee

Chonnam National University

1. Introduction

Let S be the class of functions $f(z) = z + a_2 z^2 + \cdots$ regular and univalent in the unit disc $E = \{z : |z| < 1\}$ and let S* be the subclass of functions starlike with respect to the origin. It is well known that $f(z) = z + a_2 z^2 + \cdots$ belong to S* if and only if $Re\{zf'(z)/f(z)\} > 0$ for |z| < 1.

A few years ago M.S.Robertson (5) introduced a subclass of S consisting of functions $f(z) = z + a_2 z^2 + \cdots$ which satisfy the condition

(1.1)
$$Re\{zf'(z)\{f(z)-f(-z)\}^{-1}\}>0 \text{ for } |z|<1.$$

Such functions will be called here starlike with respect to symmetric points and corresponding subclass of S will be denoted by S^{**} .

M.S.Robertson has given in (5) a sufficient condition that a function $f(z) \in S^{**}$. This condition was stated in terms of subordination. In this paper we shall prove that Robertson's condition after a stight modification is also necessary. For the proof we need the following two lemmas.

2. An extension of Robertson's Theorem.

Lemma1. Suppose $\omega(z,t) = \sum_{n=1}^{\infty} b_n(t) z^n$ is regular in |z| < 1 for $0 \le t \le 1$.

Let $|\omega(z,t)| < 1$ for |z| < 1. $0 \le t \le 1$, $\omega(z,0) \equiv z$. Let ρ be a positive real number for which (2.1) $\omega(z) = \lim_{t \to 0+} \left\{ \frac{\omega(z,t) - z}{zt^{\rho}} \right\}$

exists. Then

$$R_e\omega(z) \leq 0$$
 for $|z| < 1$.

If $\omega(z)$ is also regular in |z| < 1 and $R_e \omega(0) \neq 0$, then

$$R_e\omega(z) < 0$$
 for $|z| < 1$.

Proof By Schwarz lemma we have for |z| < 1. $|\omega(z,t)| \le |z|$ with equality only if $\omega(z,t) = z \exp i\theta(t)$, then the function

(2.2)
$$\mu(z,t) = \frac{\omega(z,t) - z}{\omega(z,t) + z}$$

is regular and $\operatorname{Re} \mu(z,t) < 0$ for |z| < 1. But when $\omega(z,t) = \operatorname{zexp} i\theta(t)$, $\mu(z,t) = i \tan(1/2\theta(t))$ is purely maginary. Thus $\mu(z,t)$ is regular and $\operatorname{Re} \mu(z,t) \le 0$ in |z| < 1 with equality occurring only if $\omega(z) = \operatorname{zexp} i\theta(t)$. For t > 0 |z| < 1 we may write

$$(2.3) Re\left\{\frac{\omega(z,t)-z}{zt^{\epsilon}}-\frac{2z}{\omega(z,t)+z}\right\}=Re\left\{\frac{2\mu(z,t)}{t^{\epsilon}}\right\}\leq 0$$

(2.1) $Re\left\{\frac{\omega(z,t)-z}{zt^e}-\frac{2z}{\omega(z,t)+z}\right\}=Re\left\{\frac{2\mu(z,t)}{t^e}\right\}\leq 0$ (2.1) implies that $\lim_{z\to 0}\omega(z,t)=z=\omega(z,0)$. Therefore, on letting $t\to 0$ in (2.3) we oftain

 $R_{\epsilon}\omega(z) \leq 0$ for |z| < 1. When $\omega(z)$ is also regular in |z| < 1 and $R_{\epsilon}\omega(0) \neq 0$ we have further that $R_{\varepsilon}\omega(z) < 0$ in |z| < 1. This follows since the maximum, in this case zero, of a nonconstant harmonic function cannot occur at an interior point.

Using this Lemma 1. we shall prove

Lemma 2. Suppose F(z,t) is regular in |z| < 1 for $0 \le t \le \delta$,

$$F(z,0) \equiv f(z), f(z) \in S \text{ and } F(0,t) = 0 \text{ for } 0 \le t \le \delta.$$

For each r, 0 < r < 1, suppose that there exists $\delta(r) \in (0, \delta)$ such that for any t in $0 < t \le \delta(r)$, F(z,t) is subordinate to f(z) in |z| < r and the limit

$$\lim_{t\to 0+} \frac{F(z,t)-f(z)}{zt^e} = F(z)$$

exists for some $\rho > 0$. Then

$$Re\left\{\frac{F(z)}{f'(z)}\right\} \leq 0 \quad \text{for } |z| < 1$$

 $Re\left\{\frac{F(z)}{f'(z)}\right\} \le 0$ for |z| < 1. If in addition F(z) is regular in |z| < 1 and $ReF(0) \ne 0$ then

$$Re\left\{\frac{F(z)}{f'(z)} < 0 \text{ for } |z| < 1\right\}$$

Proof. It follows from our assumption that there exists for any r, 0 < r < 1, a function $\omega(z,t)$, regular in |z| < r for each t, $0 < t \le \delta(r)$ which satisfies the following conditions, $\omega(z,0) \equiv z$, $\omega(0,t)=0$ for all t, $0 < t \le \delta(r)$ $|\omega(z,t)| \le r$ and $F(z,t) \equiv f(\omega(z,t))$ for |z| < r and $0 < t \le \delta(r)$. Moreover, $\lim_{t\to 0+} \omega(z,t) = z = \omega(z,0)$.

Consider now

$$F(z) = \int_{-0+}^{|x-t|} \frac{F(z,t) - f(z)}{zt^{\epsilon}} = \lim_{t \to 0+} \frac{f(\omega(z,t)) - f(\omega(z,0))}{zt^{\epsilon}}$$

We may assume that $\delta(r)$ is so small that for each t, $0 < t \le \delta(r)$, we have $F(z, t) \le f(z)$. Otherwise $F(z) \equiv 0$ and there is nothing to prove. If $F(z,t) \not\equiv f(z)$ for any t, $0 < t \ge \delta(r)$, then $\omega(z,t) \not\equiv z$, hence by Schwarz's Lemma $|\omega(z,t)| < |\omega(z,0)|$ for $z \neq 0$ and we can write

$$F(z) = \lim_{t \to 0+} \frac{f\{\omega(z,t)\} - f\{\omega(z,0)\}}{\omega(z,t) - \omega(z,0)} = \lim_{t \to 0+} \frac{\omega(z,t) - \omega(z,0)}{zt^{z}}.$$

The first limit exists and so does the second limit. Thus Lemma 1 which is applied to the

function
$$\omega(h, \tau) = r^{-1}\omega(rh, \delta(r)), |h| < 1, 0 < \tau < 1$$
 we see that
$$Re \ \omega(z) = Re \lim_{t \to 0+} \frac{\omega(z, t) - \omega(z, 0)}{zt^e} \leq 0 \text{ for } |z| < r$$

Hence $Re \frac{F(z)}{f'(z)} \leq 0$ in |z| < r. Since r can be an arbitrary number of (0, 1), we have

Re
$$\{F(z)/f'(z)\} \le 0$$
 in $|z| < 1$. If $ReF(0) \ne 0$, then $Re\{\frac{F(0)}{f'(0)}\} = ReF(0) < 0$.

If F(z) is regular and $f'(z) \neq 0$ then $Re\{F(z)/f'(z)\}$ is harmonic and by the maximum principle $Re\{F(z)/f'(z)\}<0$ in |z|<1. Now we are able to prove

THEOREM A necessary and sufficient condition that $f(z) \in S^{**}$ when f is univalent and $f'(0) \neq 0$, is that for any r, 0 < r < 1, there should exists $\delta(r) > 0$ such that for each t, 0 < t $\leq \delta(r)(1-t)f(z)+tf(-z)$ is subordinate to f(z) in |z| < r.

Proof. Sufficiency.

We apply Lemma 2 with $\rho=1$ and F(z,t)=(1-t)f(z)+tf(-z).

Then $F(z) = \lim_{t \to 0+} (zt)^{-1}$

$$(F(z,t)-f(z)) = -z^{-1}(f(z)-f(-z))$$

By Lemma2. we have

$$Re\{-(zf'(z))^{-1}(f(z)-f(-z))\}<0 \text{ for } |z|<1.$$

and this implies

$$Re\{zf'(z)\{f(z)-f(-z)\}^{-1}\}>0 \text{ for } |z|<1.$$

Necessity. Consider

$$v(z,t) = Re\left\{\frac{zF_{z'}(z,t)}{F_{t'}(z,t)}\right\} = Re\left\{-z(f'(z) - t(f'(z) + f'(-z))(f(z) - f(-z))^{-1}\right\}.$$

Since $f \in S^{**}$, we have v(z,0) < 0 in |z| < 1. By the maximum principle for harmonic function we have

$$v(z,0) < -\varepsilon(r) < 0$$
 in $|z| < r$.

By Continuity of v(z,t) with respect to t we can find a positive $\delta(r)$ such that $v(z,t) < \frac{-1}{2} \varepsilon(r) < 0$ for each t, $0 \le t \le \delta(r)$, |z| < r. Now, by a result of Bielecki and Lewandowski (1), the inequality $Re\left\{\frac{zF_z'(z,t)}{F_t'(z,t)}\right\} < 0$, |z| < r, means that the image of |z| < r under F(z,t) shrinks with increasing t. Therefore F(z,t) is subordinate to F(z,0) = f(z) in |z| < r and this proves the necessity.

References

- Bielecki, Lewandowski; Sur certaines familles de fonctions α-étoilées, Ann. Univ. Mariae Curie-Sklodowska, 15 (1961), 45-55.
- (2) G.M.Goluzin, Geometric Theory of Functions of a Complex Variable, American Math. Soc Providence, 1969.
- (3) Z. Nehari, Conformal mapping, McGraw-Hill, NewYork, 1952.
- [4] M.S.Robertson, On the theory of Univalent Functions Annals of Math. 37, (1936) 374-408
- (5) _____, Applications of the subordination principle to Univalent Functions, Pac. J. Math. 11(1961) 315-324.