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§1. INTRODUCTION AND SUMMARY

The problem of finding location estimators which are robus: ainst deviations from normality
Tas received increasing attention in the last several years. See, for example, Huber (10], and
papers cited therein,

Hardly anybody realized how bad the classical estimates could be in slightly nonnormal situations.
E.S.Pearson may have been the first to note theyhigh sensitivity to deviations from normality of
some standard procedures (tests for equality of vajances): incidentally, in connection with the same
test problems, G.E.P.Box (3) later coined the teffy; ~obustness.

From the begining, robustness has been a rather vague concept; for example, Box and Anderson
{(4) had introduced the notion as follows: Procedures are required which are robust (insensitive to
changes in extraneous factors not under test) as well as powerful (sensitive to specific factors
cunder test). )

But if one wants to choose in a rational fashion between different robust competitors to a
lassical procedure, one has to make precise the goals one wants to achieve. Unfortunately, a
consensus has not been reached at least five or six conflicting ones, and we does not think that
all of them should be called by the same name robust.

Hence we will set up the concept of robust as follows. The robust estimater should possess a
small asymptotic variance over some neighborhood of one shape, in particular of the normal one
(8) or that the distribution of estimate should change little under arbitrary small variances
of the underlying distribution F, and this uniformly in the sample size #(7).

During the last several years various approaches have been proposed to deal with the lack of
robustness of the sample mean as an estimate of the population mean when the distribution
sampled is contaminated by gross errors, i.e., has heavier tails than the normal distribution. First,
Tukey and the Statistical Reserch Group at Princeton suggested and investigated the properties of
trimmed and Winsorized means (13).

More recently, Hodges and Lehmann (8), proposed estimates related to the robust Wilcoxon
and normal scores tests, among others. Huber in (9) considered essentially the class of maximum
likelihood estimates and found those members of this class which minimize the maximum variance
over various classes of contaminated distributions. For a review of work in these directions in

estimation the reader is referred to {1), (10).
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Most of the estimators commonly studied are, under suitable regularity conditions, asymptotically
normal about the center of symmetry, with asymptotic variance depending on the underlying
distribution. We thus have a simple criterion, the asymptotic variance, for comparing the perform
ance of different estimators for a given underlying distribution, and of a given estimator for diffe
rent underlying distributions. Huber (9) has formulated and solved some minimax problems, in
which the estimators are judged by their asymptoic variance.

In this paper we show that some robust location estimators has a same property asymptotically
under some conditions.

In section 2 we define and state asymptotic variances which have been found for the three
most commonly studied types of iocation estimators, i.e., M-estimator, L-estimator and R-estimator.

In section 3 we demonstrate some relationships among the three types of estimators, i.e., under
-some conditions the asymptotic variances of these estimators are equal to each other and M-

estimator and the corresponding L-estimator is very closer.

§2. ESTIMATORS
Let X1, Xz, -, X» be independent random variables with common distribution F(z—6), where
F is symmetric, that is F(z)=1—F(—z).
We assume F has a density f. The problem is to estimate the unknown parameter § and judge
the quality of an estimator by its asymptotic variance. Each of the three types of estimators defined

below is, under general regularity conditions, asymptotically normal with mean # and asymptotic
variance as given below. Since we shall be dealing with translation-invariant statistics, we shall
henceforth assume that §=0.

Note that the estimators defined here are actually sequences of estimators indexed by n, the sample
size, but we shall simply think of them as single estimators, without an index, whenever no

confusion will arise thereby.

2-1 M-estimators ,
Maximuam likelihood type estimators, which we shall call M-estimators. Let p be a real valued.
function of real parameter, with derivative ¢=p’,
Define M either by

g;p(xi—M)=infm gp(Xi—m)

or by
i>=:"l¢ (Xi— M) =0

If ¢(x) is monotonic, M is essentially uniquely determined. And 4/ %M is asymptotically normat
with asymptotic variance
2 dz
_ 5w _| P@f@
on*(F) == e
% ([ v @s@dz)
See Huber (9} ®
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2-2 L-estimators
An L-estimator, or linear combination of order statistics, is defind as follows:

Let A2(#) be defined on (0,1) and such that
]:h(t)dt=1 and  h(l—2) =h(2).

Let Xy =:--=X be the order statistics derived from the sample

Let PP
a+1l

Define L as
L=13h@m X,

i=1

Urder some regularity conditions, 7L is asymptctically normal with asympotic variance

"1

gLt (F) :}0 Uz(s)dz,

where
1y — | k)

0O =y

See Chernoff, Gastwirth and Johus [E], and Jasckel {11).
2-3 R-estimators
Estimators derived from rank tests, which we shall call R-estimators.

Let J(2) be such that J(1—:)=~J ().
For any given r, form the 27 numbers

Xl—r,---, Xp—r: —X1+~r,---, —Xptr.
Order these 27 numbers and let Vi==1 if the ith smallest is of the form X;—r, and Vi=0Q
otherwise,
Form the sum

W) =5 () Ve

Define R as a solution of the equation W(R)=0.
1f J is monotonic, R is essentially uniquely determined. The asymptotic variance of 7% R is
IREOL
<4 . 2
(| £t f2dz)
See Hodges and Lehmann (8} and Jaeckel (11).
35 RELATIONSHIPS AMONG THE ESTIMATORS

For any given symmetric F satisfying appropriate regularity corditions, there is a three-way

O'RZ(F) =

correspondence among the three types of estimators which preserves the asymptotic variance under 7.
Let ¢(x) be such that

p(—2)=—¢(2)

for ¢ defining an M-estimator.



And we defining an L-estimator and an R-estimator as follows.
Let ¢t=F(x), so that x=F-1(¢).
We assume for simplicity that F is strictly increasing,

Let
h(@)=¢' (F1 ()} =¢ (2),
‘where
d
¥ (@) =S4
Let

J(@) =¢(F1 () =¢(z).
The symmetry conditions on % and J,

h(1—£) =h(f), J(—8)=—J(£)
are satisfied as belows.

r(l—t)=¢ (F(1-8))=¢ (-2)

=¢/ () (¢ (=2 =—¢(2)]
JA-)=¢(F1(A-1))=¢(~2)
=—¢(x)=—J ()

And we may assume that

[ v @f@adz=1.
This condition implies that

S:)h(t) di= L:h (F(2))f(z)dz -
=¥ @s@dz=1

THEOREM 1. Assuming the asymptotic variance formulas hold, we have, for the estimators
defined above,

o (F) =a 2 (F) =0z (F).
PROOF: Since

[ v@r@de=1,
o (F)=[ “$@f@dz.
For the L-estimator we have

R
U(‘)“L, FFTw)

=1
Fop(F(z))
o o @

-1

i %y @dz=gFr 1),
since ¢ (0) =0. Therefore,
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o =["@a={ "pr1@)a

=[ v@f@ds=a®.

Since the denominator for the variance of the R-estimator is the square of

®d “rd
| Sz VFE@If@dz=| "[Ls@ )@ de=1,
we have
o(F)={ "J(0yar
=[ 9@ f@de=an(®). (QED.)
If we introduce the function ¢, displaying explicitly the parameter %k occurring in it
d(zx)=x for |z|<k
=ksign(z) for |x|=4,
we have
h () =constant for F(—k)<te<F(k,)
=0 otherwise.

This is the trimmed mean with trimming proportion a=F(—%) in the sense of Tukey. That is:
Tukey defines the a-trimmed mean of the sample by

— 1 n— (an)

—— X,
« . i)
n—2{an) =G +1" ¢

where (an) is the greatest integral in az for 0§a<%.

The equality of variances in this case was recognized by Bickel (2).
The corresponding R-esti mattor is defined by
J@)=F"1) for F(—k)<e<F )
=k for t=F()
=—k  for t=F(—F)
If F is the contaminated normal distribution considered by Huber, this J(£) defines a sort of
truncated Van der Waerden test. See Lindgren (12) and Gastwirth (6).

It follows from the theorem that if any one of three estimators is asymptotically optimal for F
among translation-invariant estimators, then all three are. Correspondences of this type have been
ngive in the asymptotically optimal case by Gastwirth (6).

Jaeckel (11} have investigated that under some more restrictive conditions the relationship
between the M-estimator and the corresponding L-estimator is even closer than that indicated
above. We restate some definition, a lemma and a theorem from Jaekel (11)

DEFINITION. (1) The sequence of random variables {Z,) is bounded in probability if

v0>>0 4B, N such that ya=N: P{|Z.|<B)=1—4.

(2) The sequence of random variables {Z,} is bounded in probability uniformly in k if

v0>0 4B, N such that Va=N: P{|Z]|=<B, vk =1-0.

(3) The sequence {Z,} ({Zns}) is O(#® in probability (uniformly in k) if the sequeice [

Zn ]
ne

([Znﬁ ]) is bounded in probability (unformly in £).

ns



DEFINITION. The sample distribution function is

Fn($)=—:.-'- for X(i)<x<X(|'+l)g i=1, ‘s n—1
=0 fol' x<X(1)
=1 for 1’>X(n)
=i*=;_;_—l for z=Xg, i=1, =, n

LEMMA. Suppose F kas a density f(x), and there are number ag >0, € >0, and fo>>0 suck
that F(z)=fo for all = such that ay—e=F(z) <1— (@o—¢0). Then X¢—F1G*%) is O(T/%T)

in probability uniformly in i=(am)+1, -, n— (aon) That is, for all 60 there exist D and
Nsuch that for all n=N:

PXo—F(% | = ‘/_’;_fo for i=(aw) 41, n— (zon) Z1~0.

PROQOF. The statistic

Kn= ¢ nsup|Fa(z) —F(2) |
has a limiting distribution which was found by Kolmogorov. For a given &, we can therefore
choose a D so that for sufficiently large »,

PK,=D)=1-4.
Suppose K,=D; that is,

| Fu(z) — F(x) |§‘71—)’T for all z.
Then
%= F(zg) | =—2— for i=1,2, 1
W/ = v n 9 &y *tts M
Since ((aon) +1)*—ap and (n— (aon))*—1—aq,

and fn <%€o for sufficiently large n,

we have, for Irage 7,
ap—€<F(X ) <1~ (@o—€o) for i={(aon)+1,+, n—(aon].

Since, for ap— €<t 1 — (a0—€0)

we have '
d i1 1
@ O =

we can apply the mean value theorem to F~!(¢), obtaining
. 1. D
= —F- YY) [ e | Y=
[P @9 ~FI(F (X)) Sl F(Xo) | S 737,

for i=[aon)+1,+, n—(aon). (Q.E.D.)
THEOREM 2. Suppose E has a bounded density f and satisfies the conditions of Lemma
Sfor some ay. Suppose $(x) and h(t) are related by
k(@) =¢ (F () =¢ (D),
the asymptotic variance formulas apply, and
RO =¢ (2)=0 for t<ap and >1—ao
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Finally, suptose that ¢ is continuous, and tha', at all but a finite number of points ¢/ fis
defined and bounded and has a bounded derivative. Then
v (M—L)—,0.
In fact, M—L is o(%) in probability.
PROOF. If we write
X =F71(*) +ei,
we have, by Lemma, e; is O(_Vl—n—‘) in probability uniformly in ¢ such that ay=i*=1-ao
Since
Fl(1—i*)=—F-1(*) and A(1—i*)=h(*), ThE*)F1(*)=0.
L is therefore defined by
aL=3h(@) Xo =2 h(@*) (F1E*) +e)
=Zi]h ) ea=2¢ (F1E))en

M is defined by 3¢ (Xu—M)=0. We can expand each term of this sum as follows;
6] ¢ Xy —M) =¢(F1{@*) + (e:i—M))
=¢(F1E*) )+ (e~ M) ¢ (F2(%)] +ri

Let »="}7;. These remainder terms will be dealt with later. Summing over ¢ in (D we get

0=;¢ (X(:‘) —M)
=2 p(F 1) +2edf (F-1@)) —MI (F1%) +r.

Since  ¢(—2)=—¢(z), THF1E*))=0.
Since §h () dt=1, T (F-1G%))=h(@*) =a+0(1);

the excess here may be absorbed intv the remainder term r.
Therefore,

O=0+nL—nM+r
or M—-L="-
n
We must now examine the remainder. First suppose ap<Si*<1—ao. If no bad point of ¢/ lies
between X —M and F-1(i*), then by(l),
Iril S (e—M)? sup ¢,

which is O(%) in probability uniformly in i. The contribution of these terms to r is therefore

O (1) in probability. If a bad point of ¢/ lies between X —M and F-1(*), then r; is 0[—‘%-;-]
in probability uniformly in 7, since ¢ is continous and ¢’ is bounded. Since f is bounded, the
number of such ¢ is O(+/#) in probability, so their contribution to r is O(1) in probablity.
Now Suppose #*< ap. Since ¢(x) is constant for z<<F-1(ap), (1) implies
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ri=0 if XgH-—-MIF1(ay).
If X4 —M=F-1(as), we have, letting j be the smallest i such that *=ay,
O=X4H—M—Fa)=X; —M~—F(ag)
=B (j%) —F-3 () +ej— M,

which is O(%l:-) in probability. Thus the intrusion of X —M into the non-constant part of

‘the domain of ¢ is O L in probability uniformly in 7. Hence, by (1), ri is O L in
Vn v

probability uniformly in 7. Since the number of such ¢ is O(+/7) in probability, their contribution

to r is O(1l) in probability. A similar argment holds for i*>1—ag. Therefore, r is bounded in
probability, and the theorem follows. (Q.E.D.)
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