Tracer Study Using $H_2O^{18}$ on the Oxidation of Vanadium (III) by Molecular Oxygen

산소에 의한 바나듐 (III) 이온의 산화반응에 대한 $O^{18}$ 동위원소 연구

  • Published : 19740800

Abstract

Isotopic experiments using $H_2O^{18}$ on the oxidation of V(III) in acid perchlorate by molecular oxygen were performed in the range pH 1.0 to 3.0. At pH < 2, where a rate equation of the form TEX>$ -\frac{d[V(III)]}{dt}=k_1\frac{[O_2][V(III)]}{[H^+]}$ is adequate, the tracer study clearly indicated that all the product vanadyl ion's ($VO^{2+}$) oxygen originated from the molecular oxygen. At pH > ~2, where a different rate expression of the form $-\frac{d[V(III)]}{dt}=K_2\frac{[O_2][V(III)]^2}{[Ht]^2}$is required, the isotopic experiment showed that half the vanadyl oxygen originated from the molecular oxygen. Considering the results of the isotopic study, a mechanism for the V(Ⅲ)-O2 reaction at pH < ~2, may be suggested as follows: The tracer results at pH > ~2 imply that the rate determining step may be $$ V_2(OH)_2^{4+} + O_2 \rightarrow 2VO^{2+} + H_2O_2$$ followed by $$V_2(OH)_2^{4+} + H_2O_2 \rightarrow 2VO^{2+} + 2H_2O$$ after establishing the equilibria V^{3+} + H_2O \leftrightarrow VOH^{2+} + H^+, and 2VOH^{2+}\leftrightarrow V_2(OH)_2^{4+}$$

과염소산 수용액 중에서 바나듐(III)이온이 산소에 의해 산화되는 반응에 대해서 pH 범위1∼3에 걸쳐 $H_2O^{18}$을 이용한 동위원소 실험을 행했다. 반응속도식$-\frac{d[V(III)]}{dt}=k_1\frac{[O_2][V(III)]}{[H^+]}$가 성립되는 높은 히드로늄이온 농도(pH<∼2)에서는 반응생성물 $VO^{2+}$이온의 산소가 모두 산소분자에서 유래된다는 결과를 얻었다. 반면 $-\frac{d[V(III)]}{dt}=K_2\frac{[O_2][V(III)]^2}{[Ht]^2}$의 속도식이 성립하는 pH>∼2 범위에서의 추적자 실험은 바나딜이온의 산소의 50%가 산소분자에서 온다는 결과를 주었다. 반응속도론의 결과 화학량론적 결정과 아울러 동위원소 실험결과를 고려하면 다음과 같은 반응 메카니즘을 제안할 수 있다.$$V^{3+}\rightleftarrows VOH^{2+} + H+, 2VOH^{2+}\rightleftarrowsV_2(OH)_2^{4+}$$$$ 낮은\PH:\ VOH^{2+}+O_2 \rightarrow V(O_2)OH^{2+}, V(O_2)OH^{2+}+VOH^{2+}\rightarrow 2VO^{2+}+H_2O_2$$$$ 높은\PH:\V2(OH)_2^{4+}+O_2\rightarrow2VO^{2+}+H_2O_2, V_2(OH)_2^{4+}+H_2O_2\rightarrow2VO^{2+}+2H_2O$$

Keywords

References

  1. Coord. Chem. Rev. v.1 J. Selbin
  2. J. Phys. Chem. v.56 R.A. Plane;G. Taube
  3. J. Amer. Chem. Soc. v.60 M. Cohn;H.C. Urey
  4. J. Chem. Phys. v.19 J.P. Hung;H. Taube
  5. J. Inorg. Nuclear Chem. v.16 G. Gordon;H. Taube
  6. Inorg. Chem. v.2 B. J. Masters;S. W. Rabideau
  7. J. Appl. Rad. Isotopes v.5 M. Anbar;S. Guttmann
  8. Current Sci.(India) v.34 D. Reddy;S.B. Rao
  9. J. Amer. Chem. Soc. v.80 T.C. Hoering;F.T. Ishimori;H.O. McDonald
  10. Nature v.412 H.A.C. McKay
  11. Zh. Strukt, Khim. v.4 A.I. Rivkind
  12. J. Amer. Chem. Soc. v.89 T.J. Swift;T.A. Stnvenson;G.R. Stein
  13. Acta Chem. Scand. v.9 F.J.C. Rosotti;H.S. Rosotti
  14. Inorg. Chem. v.1 G. Gordon;H. Taube
  15. Helv. Chim. Acta. v.49 Th. Kaden
  16. J. Gen. Physiol. v.49 no.1 H. Taube
  17. Angew. Chem. Internat. Edit. v.6 no.6 S. Fallab
  18. M.S. Thesis, University of California R. Sugimoto
  19. Ph. D. Dissertation, University of Virginia M.Z. Choi
  20. J. Phys. Chem. v.73 L. Andrew
  21. J. Phys. Chem. v.68 N.A. Daugherty;T.W. Newton