Structure and Reactivity of Alkylchloroformates. MO Theoretical Interpretations on Halide Exchange Reaction

염화 포름산 알킬의 구조와 반응성. 할로겐화 이온 교환반응에 대한 분자궤도론적 고찰

  • Published : 19740800

Abstract

CNDO/2 MO theoretical studies and kinetic studies of halide exchange reactions for alkylchloroformates have been carried out in order to investigate structure-reactivity relationship of alkylchloroformates. From the result of energetics, it was concluded that the most stable configuration of alkylchloroformate is that in which alkyl group and chlorine are trans to each other, and that the hindered rotation about the bond between the carbonyl carbon and alkoxy-oxygen bond is attributed to the ${\pi}-$electron delocalization. It has been found that the large charge separation is due to -M effect of carbonyl and alkoxy oxygens and-I effect of chlorine. The order of rates in solvents studied was $(CH_3)_2 > CO > CH_3CN{\gg}MeOH.$$I^->Br^->Cl^-$ in protic solvent, and of Cl^->Br^- >I^-$ in dipolar aprotic solvents. Alkyl group contribution has the decreasing order of $CH_3-> C_2H-{\gg}i-C_3H_7-.$ The solvent effect has been interpreted on the basis of initial and final state contribution. A transition state model has been suggested, and it has been proposed that the most favorable mechanism is the addition-elimination. From the results of activation parameters and electronic properties, an energy profile has been proposed. Structural factors determining reactivities of alkylchloroformates have been shown to be charge, energy level of ${\alpha}^*LUMO$ to C-Cl bond and ${\alpha}^{\ast} $antibonding strength with respect to C-Cl bond in this MO. Charge and polarizability of nucleophile, and the interaction of these effects with solvent structures are also found to be important.

염화포름산 알킬의 할로겐화 이온 교환반응을 반응속도론적으로 연구하고, 이의 전자 구조적 특성을 CNDO/2 MO계산으로 연구하였으며 이로부터 구조와 반응성 간의 관계를 논의하였다. 염화포름산 알킬의 에너지면에서의 가장 안정한 입체배치가 알킬기와 염소원자 사이가 서로 트랜스인 입체배치임을 알았으며, 결합주위의 회전장애가 {\pi}-전자 비편재화에 기인됨을 밝혔다. 염화포름산 알킬은 하전분리가 심한 극성물질이며, 이것이 카르보닐 산소와 알콕시 산소의 효과 및 염소의 효과에 기인됨을 밝혔다. 반응속도에 미치는 용매효과는 $(CH_3)_2CO>CH_3CN{\gg}MeOH$순으로 반응성이 감소되는 작용을 나타냈으며, 친핵성도는 양성자성 용매중에서 $I^->Br^->Cl^-$, 비양자성 용매 중에서 $Cl^->Br^->I^-$이었으며 알킬기의 기여는 $CH_3->C_2H_5->i-C_3H_7-$순이었다. 초기상태와 천이상태의 안정화 기여를 기초로 용매효과를 해석하였으며 초기상태 탈용매화의 특성으로 친핵성도를 논의하였다. 이 반응에 대하여 가장 유리한 메카니즘을 첨가-제거 메카니즘으로 제안하였다. 염화포름산 알킬의 반응성을 결정하는 구조적 요인은 하전, C-Cl 결합에 대하여 ${\alpha}^{\ast}$인 LUMO의 에너지준위 및 이 MO에서 C-Cl결합의 반결합세기임을 밝혔다.

Keywords

References

  1. Structure and Mechanism in Organic Chemistry C.K. Ingold
  2. Solvolytic Displacement Reations
  3. Molecular Orbital Theory for Organic Chemist A. Streitwieser Jr.
  4. Chem. Revs. v.60 M.L. Bender
  5. Acta Chem. Scand. v.19 A. Kivinen
  6. Ber. v.70 R. Leimu
  7. Can. J. Chem. v.48 A. Queen;T. A. Nour;M. N. Paddon-Row;K. Preston
  8. Can. J. Chem. v.45 A. Queen
  9. J.Chem. Soc. E. W. Crunden;R. F. Hudson
  10. Resonance in Organic Chemistry G.W. Wheland
  11. Can. J. Chem. v.45 E. Bock;D. Iwacha
  12. Can. J. Chem. v.46 E. Bock;D. Iwacha;H. Hutton;A. Queen
  13. J. Amer. Chem Soc. v.72 J. M. O. Gorman;W. Shand, Jr.;V. Schoemaker
  14. J. Korean Nucl. Soc. v.4 I. Lee
  15. J. Chem. Phys. v.44 J. A. Pople;G. A. Segal
  16. J. Amer. Chem. Soc. v.89 J. A. Pople;M. Gordon
  17. Sigma Molecular Orbital Theory O. Sinanoglu;K. B. Wiberg
  18. J. Korean Chem Soc. v.17 I. Lee;B. Lee;K.S. Kim
  19. J. Korean Chem Soc. v.18 I. Lee;B. Lee;J.E. Yie
  20. J. Chem. Phys. v.51 R. L. Hilderbrandt
  21. Special Publication No. 11 and 18 Tabes of Interatiomic Distances and Configuration in Molecules and Ions L. E. Sutton(ed.)
  22. Approximate Molecular Orbital Theory J.A. Pople;P.L. Beveridge
  23. J. Amer. Chem. Soc. v.91 C. Trindle
  24. Tetrahedron v.24 K.B. Wiberg
  25. J. Amer. Chem. Soc. v.93 I. Lee;M.H. Whangbo
  26. J. Phys. Chem. v.76 T. Drakenberg;K. Dahlqvist;S. Forsen
  27. J. Phys. Chem. v.74 J.F. Yan;F.A. Momany;R. Hoffman;H.A. Scheraga
  28. J. Korean Chem. Soc. v.13 M.H. Whangbo;B. Lee;I. Lee
  29. J. Korean Nucl. Soc. v.1 B. Lee;I. Lee
  30. Chem. Rev. v.69 A. J. Parker
  31. J. Amer. Chem. Soc. v.90 R. Alexander;E.C.F. Ko;A.J. Parker;T.J. Broxton
  32. J. Amer. Chem. Soc. v.90 E.C.F. Ko;A.J. Parker
  33. J. Amer. Chem. Soc. v.87 E.M. Arnett(et al.)
  34. Bull. Chem. Soc., Japan v.42 K. Fukui;H. Hao;H. Fujimoto
  35. J. Amer. Chem. Soc. v.93 J.P. Lowe
  36. J. Amer. Chem. Soc. v.94 J.P. Lowe
  37. J. Amer. Chem. Soc. v.84 A. Dedieu;A. Veilard
  38. J. Chem. Educ. v.50 J.D. Bradley;G.C. Gerrans
  39. 有機反應機構 v.11 井本英二
  40. The Chemistry of Carbonyl Compounds C.D. Gutsche
  41. Organic Reactivity(USSR) v.5 V.A. Savelova;L. M. Litvinenko
  42. Organic Reactivity(USSR) v.5 L.M. Litvinenko;A.I. Kirichenko;A.S. Savchenko
  43. Organic Reactivity(USSR) v.7 L.M. Litvinenko;G.V. Semenyuk
  44. J. Amer. Chem. Soc. v.85 R.G. Pearson
  45. J. Amer. Chem. Soc. v.89 R.G. Pearson;J. Songstad
  46. J. Amer. Chem. Soc. v.90 G. Klopman
  47. J. Amer. Chem. Soc. v.89 R.G. Pearson;J. Songstad
  48. J. Amer. Chem. Soc. v.90 G. Klopman