Determination of Reactivities by Molecular Orbital Theory (VI). Sigma MO Treatment on $C_6H_5YCH_2Cl$

화학반응성의 분자궤도론적 연구 (제 6 보). $C_6H_5YCH_2Cl$ 형 화합물의 시그마분자궤도론적 고찰

  • Lee, Ikc-Hoon (Department of Chemistry, College of Science, Inha University) ;
  • Lee, Bon-Su (Department of Applied Chemistry, Seoul National University) ;
  • Lee, Jae-Eui (Department of Chemistry, College of Science, Inha University)
  • Published : 1974.04.30

Abstract

Extended H ckel Theory and CNDO/2 MO calculation methods have been applied to $C_6H_5YCH_2Cl$(Y = None, -$CH_2$-, -O-, -S-, -CO-, -$SO_2$-). It has been shown that charge distributions in molecules are mainly controlled by the migration of valence inactive electron, giving the order of ${\sigma}$-acceptor and ${\pi}$-donor effects -O- > -S- > -$CH_2$- > -$SO_2$-. The -CO- group exceptionally acts as ${\sigma}$-donor and ${\pi}$-acceptor. It was also predicted that, $S_N2$ reactivities of C$C_6H_5YCH_2Cl$ would be in the order of -O-${\thickapprox}$-CO- >>-S-${\thickapprox}$None > -$CH_2$-, neglecting solvent effect. From the results of our studies, we conclude that the structural factors influencing 의 $S_N$ reactivities will be: (1) positive charge developments on reaction center carbon atom (2) energy level of ${\sigma}$-antibonding unoccupied MO with respect to C-Cl bond. (3) ${\sigma}$-antibonding strength of C-Cl bond at that level.

$C_6H_5YCH_2Cl$(Y=None, -$CH_2$-,-O-,-S-,-CO-,-$SO_2$-)에 대하여 EHT및 CNDO/2 MO계산을 행하고 이에 bond index 해석법을 적용하여, 분자내의 하전분포는 주로 원자가 비활성 전자의 이동에 기인되며, -O->-S->-$CH_2$-$SO_2$-의 순서로 ${\sigma}$-전자받게의 특성과 ${\pi}$-전자주게의 특성을 나타내며 -CO-는 ${\sigma}$-전자주게, ${\pi}$-전자받게로 작용함을 밝혔다. 또한 $C_6H_5YCH_2Cl$$S_N2$반응성이 현저한 용매효과가 없을 때 -O-${\thickapprox}$-CO->>-S-${\thickapprox}$None>-$CH_2$-의 순일 것으로 제안하였으며 실험 사실과 거의 일치함을 알았다. 이로부터 $S_N$형 반응에 크게 영향을 미치는 효과는 용매효과를 제안하였으며 실험 사실과 거의 일치함을 알았다. 이로 부터 SN형 반응에 크게 영향을 미치는 효과는 용매효과를 제외하면 반응중심의 양(+)하전 크기, C-Cl 결합에 대하여 ${\sigma}$-반결합성인 비점유궤도함수의 에너지 및 그 준위에서의 C-Cl간 반결합성이 경쟁적으로 작용할 것임을 밝혔다.

Keywords

References

  1. Molecular Orbital Theory for Organic Chemistry A. Streitwieser Jr.
  2. Singma Molecular Orbital Theory Octay Sinanoglu;K. B. Wiberg
  3. Ministry of Science Technoloy Report No. R-72-71 Mo Theoretical Studies on Chemical Reactivity I. Lee
  4. J. Chem. Phys. v.39 R. Hoffmann
  5. J. Chem. Phys. v.40 R. Hoffmann
  6. J. Chem. Phys. v.44 J. A. Pople;D. P. Santry;G. A. Segal
  7. Approximate Molecular Orbital Theory J. A. Pople;P. L. Beveridge
  8. J. Chem. Phys. v.23 R. S. Mulliken
  9. Bull. Chem. Soc., Japan v.38 K. Morokuma;H. Kato;T. Yonezawa;K. Fukui
  10. J. Amer. Chem. Soc. v.91 C. Trindle
  11. Tetrahedron v.24 K. B. Wiberg
  12. J. Amer. Chem. Soc. v.93 I. Lee;M. H. Whangbo
  13. J. Chem. Educ. v.50 J. D. Bradely;G. C. Gerrans
  14. Bull. Chem. Soc., Japan v.42 K. Fukui;H. Hao;H. Fujimoto
  15. Bull. Chem. Soc. Japan v.46 T. Fueno;O. Kajimoto;K. Izawa;M. Masago
  16. Bull. Chem. Soc. Japan v.44 J. Hayami;N. Tanaka;S. Kurabayashi;Y. Kotani;A. Kaji
  17. J. Chem. Phys. v.51 R. L. Hilderbrandt
  18. Structure and Mechanism in Orhanic Chemistry C. K. Ingold
  19. J. Amer. Chem. Soc. v.93 J. P. Lowe
  20. J. Amer. Chem. Soc. v.94 J. P. Lowe
  21. J. Amer. Chem. Soc. v.84 A. Dedieu;A. Veilard
  22. Mechanism and Structure in Organic Chemistry E. S. Gould
  23. J. Amer. Chem. Soc. v.84 J. O. Edward;R. G. Pearson
  24. J. Amer. Chem. Soc. v.90 G. Klopmann
  25. 有機反應機構 v.11 井本英二
  26. J. Koeran Nucl. Soc. v.5 C. H. Park
  27. J. Koeran Chem. Soc. v.13 B. S. Lee;I. Lee
  28. Interatomic Distances
  29. Interatomic Distances Supplement
  30. B. S. Lee;I. Lee