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1. Introduction
Consider a sequential decision procedure for testing the following composite hypo-
theses about the mean of a normal distribution with unknown variance ¢* with

preassigned error probabilities of @, and ay:
Hy: p=pq, 6>0 vs. H: p=py, 0>0.

The sequential ¢-test proposed by Wald (14) and, in a modified version by others,
for example Rushton (13), would not be appropriate if certain absolute differences
in the mean are of interest as it often happens in applications, irrespective of a.

One approach to the problem is due to Baker (2). The procedure consists of
taking a preliminary sample of fixed size m to estimate ¢ and to choose the
boundaries for the sequential probability ratio test (SPRT) accordingly, and then
sample one at a time until a terminal decision is reached. In order to make the
procedure efficient in applications it is necessary to have some idea as to the first-
stage sample size. In brief, Baker ignored the information available in the first-
stage sample about the population mean, but solely for estimating the variance.
“This information was incorporated in (9). In this paper we shall be concerned with
the optimal sample size problem based on the test denoted by 7, which consists
of “resampling” the first-stage sample.

Let X,, X;,--- be a random sample from N(g,o*) and without the loss of gener-
ality assume p,>>p. The first stage of the test T, consists of taking a preliminary
sample of size m, m>1, to compute the usual unbiased sample variance S,2. As in
{(2) let A, and B, denote the SPRT boundaries for the log-likelihood ratio given
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m. These boundaries can be obtained from the implicit equations involving A..
B., @y, a, and the density of S.,?, and are extracted in part in Table 1. The alter-
native boundaries used in (9) are too conservative especially when a,, a; and m
are small. After S,? is obtained the test T, is carried out as follows: sample star-

ting from the first-stage sample on hand if

SnBu/ (tr—pta) +E(pot ) /2< Z il X <SuPAn/ (prr—pro) kot 1) /2 ey

and accept H, or H, according to whether the left-hand or the right-hand inequa-
lity is the first not satisfied. Note that if 2<<m at the time of a terminal decision,
then no additional sample is needed beyond the first-stage sample while if the de-
cision is not reached by k¥ <<m, then additional observations are required. Theo-
retically, the test based on (1) may be subjected to question since Zj_ X, is not in-
dependent of S,2 if k<m. The possible effect, however, would be negligible since
m is going to be small relative to the average sample number (ASN). Nevertheless,
in order to circumvent the theoretical difficulty, we shall assume that k>m

although it may happen that % <m in practice. A simulation study is employed

to ascertain the negligible effect of possible inaccuracy in Section 4.

2. Conditional ASN and Its Upper Bound
Let

r=(u—po) /o, t=S,%/0%
Co=(e""—1)/(e*n' —e *n"),

and E (N|S.? denote the conditional expectation of the sample size when a given
S,? is used in the SPRT. Under H, or H,, and for a,=a;: and r small, we have
from (14) that

EWN|S)=~2tA.CC.—1) /77

The conditional ASN, E(N|m), when the preliminary sample of size m is used to

compute S,° is then

EWIm=[" E(NIS.)p(S.)dS.2 @
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where p(S,?) is the density function of S,>. The approximation of the ASN of the
test T, by E(N|m), of course, is valid only if the test is not likely to terminate
with the first stage. Using the values of the A, obtained in (2], the estimates g(m)
of ?E(N|m) are computed from (2) by the numerical integration for m=3(2)21
and m=21(10)41 when a;=a;=0.01 and when a;=a,=0.05. These appear in Table 1.
It can be seen that the value of g(m) approaches the corresponding value of the
SPRT (with ¢ known) Z.e., 5.6 and 9.1 as m increases. Hall (9) also computed
g(m) for m=16 and m=31 but the values differ slightly from Table 1 resulting

from the slightly more conservative boundaries in the development.

Table 1. Termination Boundaries and the Estimate g(m)
of y2E(N|m) when ay=a:=a=0.05 and «=0.01

An(=—Bn) g(m)
[24 [24
m 0.05 0.01 0.05 0.01
3 13.60 67.00 27.1 134.4
5 5.84 15.93 11.3 31.8
7 4.65 10.24 8.9 20. 4
9 4.12 8.31 7.8 16.5
11 3.85 7.35 7.3 14.6
13 3.68 6.78 6.9 13.4
15 3.56 6. 40 6.7 12.7
17 3.48 6.13 6.5 12.1
19 3.41 5.94 6.3 11.7
21 3.36 5.79 6.2 11.4
31 3.22 5.35 5.9 10.5
41 3.15 5.15 5.8 10.1

The work of Baker (2), Bhate (3), Kemp (11J, and Page (12) regarding the
ASN all indicated that the Wald’s approximation can underestimate the true ASN.
In particular, Baker’s experimental study showed that a better approximation is

given by the upper bound of the ASN or by the mean of the ASN and the upper
bound. Hence, it will be useful to obtain the analogous upper bound for y?E(N|m).

Let

FP=7r/2+y(/2)/9(—7/2)],
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where y(x)=(27) % exp(—=?/2)

and @(x) denotes the standard normal distribution function. Then for both H, and

H, it follows from (14, p. 170) that
EWNIS.H<2tA,.QC.— 1)/ 427 () Cu/ 72 3

Before we proceed to obtain the upper bound for y?E(N{m), consider the function

H(m, ) defined by

Hom, =] {CkGm, 1) =13/ Ckon, i) =17 Gm, 193} (S, dS., @
where k(m, p)=explh(p) A.t)
with Q)= (et pe—2p) / (pr1— o) .

The function H(m, #) gives the operating characteristic function. The function is
also given by (2) but with a slight error. (Also note the error in (34) of the same

paper.) The expansion for (4) is given by
Hom, 1) =/2)F 3 0@k () Auto/2) 3 —2h(0) Auto/24 () A" D) 5)

where »==m—1. The function H(m, #,) can be used to assess the adequacy of the
stopping boundaries, A, and B,. Using (5) the values of H(m, o) for m=3(2)21
were computed. The range obtained was 0. 9508 to 0. 9520 for ay=a,=0. 05-and 0.9901
to 0.9904 when ay=a,=0.01, so the boundaries given in Table 1 appear to be
remarkably good.

In order to obtain the upper bound for 7?E(N|m) we substitute (3) into (2) to

obtain

TPEWN|Im) <g(m)+2Hm, 1) (1),

and hence the upper bound for y*E(N|m) denoted by g.(m) is approximated by

g.m)y=g(m) +2U0—a) fF(). (6)
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3. The Firsi-Stage Sample Problem
As has been remarked the approximation of the ASN by g(m)/y? or g.(m) |7 is
valid only if the test is not likely to terminate with the first stage. Let F(N/m)
denote the ASN of the test T, irrespective of whether the test terminates with the
first stage or not. If P,(N=j) denotes the probability that a decision is reabhed at
the jth stage and not before when (An, B.) are used as the stopping limits, then

F(N|m)=mPn(N<m)+E(N|m)— Z'::Iij(N:j)

:E<N|m>+jz;‘<m—j> Pa(N=1). )

Note that if m is very large then F(N{m)=m is as it should be. The optimal
sample size m, of the first-stage of T, can be defined as the value of m that
minimizes F(N|m).

The methods of determining the distribution of the decisive sample number (DSN)
for the SPRT when ¢ is known have been studied by Kac (10), Bhate (3], Ghosh
(8) and Chanda (4]. These methods are too complicated to be facilitated in
practice. For the normal distribution Cox and Roseberry (6] showed that the variance
of the DSN under H, or H, is approximately proportional to the square of the
ASN, in agreement with the sample experiment they performed earlier (5]. It
would, therefore, seem that P,(N=j) can be reasonably approximated a lognormal
distribution. Using the standard correction term for continuity the desired approxi-

mation is
Pu(sz)zr?Elog(j—FO.5)—#;/0,-]—!1)E10g(j—0.5)—#.-)/0.-], =12, 8
where p; and o;® are the mean and the variance of logN. In order to estimate g;

and ¢, let V.(N|m) denote the conditional variance of the DSN under H,, i=0,1,

when m is the first-stage sample size. If ag=ay, it follows from (13) that

3

V:(N|m) z4E(Nlm)/Tz"‘4ai(1—ai) (AM—BM)Z/T". ©))
Using the property of the lognormal distribution (1) we obtain

o2=log(1+V,(Nim)/E*(Nim)J, : (10
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and 1:=1oglE(N|m))—a.2/2. an
Therefore, only the estimate of E(N{m) is needed to approximate the distribution
of the DSN. the that m, would depend only on 7 aside from a, and «,. The calcu-
lations 6n Baker’s experimental data indicated that (8) gives a reasonable approxi-
mation of the distribution if we use the mean of glm) and g,(m) as the estimate
of P?E(N|m) at least when ao=a=a=0.05 and when a=0.01. See the Appendix for

an example of goodness-of-fit for the distribution by the lognormal approximation.

4. Numerical Results

By substituting (8) into (7) we can determine numerically the optimal first-stage
sample size m,. Table 2 gives m, and the corresponding F(N|mq) for y=0.4(0.1)1.0
and y=1.2 when «=0.01 and when a=0.05. For the purpose of rough comparisons,
the sample size required by the Student #-test and the approximate ASN of the
sequential ¢-test are also given in Table 2. The ASN of the sequential #-test is
computed as (14-0.57%) times the ASN of the ¢ known SPRT, the asymptotic result
due to Cox [7].

It was noted that both the optimal first-stage sample size m, and the ASN are
decreasing on 7 although they become fairly stable as 7 increases. Comparisons of
the two-stage sequential test with the i-test and with the sequential #test would

be unfair to the first since the latter two require that the alternative hypothesis

Table 2. The Optimal First-Stage Sample Size (in Parentheses), the
Corresponding ASN and Sample Size Required For ¢-Test and
ASN of Sequential ¢-Test

SPRT t-Test Sequential #-Test
[44 a a

7 0.05 0.01 0.05 0.01 0.05 0.01

0.4 (23) 42.5 (35) 68.3 70 136 35.7 60. 8
0.5 (18) 29.3 (27) 46.8 45 90 23.9 40.5
0.6 (13) 22.0 (21) 34.9 32 63 17.3 29.5
0.7 (12) 17.4 (18) 27.4 24 47 14.0 23.8
0.8 (10) 14.3 (16) 22.5 19 37 11. 0 18.6
0.9 © 12.1 (14) 19.0 15 29 9.1 15.6
1.0 (8 10.7 (13) 16.5 13 25 8.0 13.5
1.2 @ 8.4 11 13.0 10 18 6.4 10.8
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be specified in s-units. Even so, the relative efficiency of the two-stage test to the
{-test is appreciable especially when 7 is small. It would appear that the two-stage
test requires roughly 15 to 30 percent more observations on the average than the
sequential ¢-test does.

It was encouraging to observe that the ASN function is fairly flat in the neighbor-
hood of m, and that, even if the initial sample size does differ from m, by, say
4, the resulting loss in the ASN would be relatively small as it can be noted in
part from Table 3.

The argument for the optimal first-stage sample size involves a number of approxi-
mations and assumptions. However, it is unlikely that the result will produce
any serious error in the most practical application mainly because the ASN function
F(N|m) appears to be fairly constant in the neighborhood of m,. In order to provide
further assurance as to the efficacy of the results, simulation study was performed.
For this purpose we considered the test of hypothesis Ho: p=0 against alternative
H,: p=1 when a;=a=0.05 and when a;=a;=0.01 with 7=20.4(0.2)1.0 under H,.

For each case m random samples from the corresponding normal distribution were
generated to compute S,%. Then we proceeded according to the stopping rule de-
scribed in Section 1. We performed 400 independent repetitions of such experiment
for vairous values of m, and the ASN was obtained as the average of DSNs. The
results for y=0.6 and y=1.0 are summarized in Table 3 together with the cor-
responding ASN obtained from the approximate method. From the simulation
experiment performed, first, it would appear that the ASN is slightly underestimated
by the approximate method as is the case with Wald’s approximation of the ASN for
the SPRT: even so the optimal initial sample size computed from the method seems
to be quite satisfactory. Secondly, it was also reassuring to observe that the empiri-
cally estimated actual probability of Type I error ranges from 0.02 to 0.04 when
ao=0.05 and 0.005 to 0.012 when a;=0.01. Note that because of the symmetry
there is no need for performing the simulation when H, is true.

The results, of course, apply strictly only to the case where H, or H, is true and
when a,=a;. Since m, is monotone decreasing on 7, it is clear that the optimum
should be greater than m, if x (o, 1) and smaller than mg if pe& (g, 10). Unfor-
tunately, but as might be expected, m, depends on y so that some idea about ¢ is

required to choose m,. Thus, further work is warranted to extend the applicability
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Table 3. ASN Obtained by Approximation and by Simulation

First-stage

e ao(=ay) Sample Size Approximation Simulation

9 23.8 24.5

11 22.7 23.7

0.05 13 22.0 23.5

15 22.3 22.6

17 22.8 24.3

0.6

17 36. 2 36.5

19 35.3 36.0

0.01 21 34.9 35.1

23 35.2 34.9

25 35.4 36.5

3 28.3 28.4

5 12.9 13.3

0.05 7 10.8 12.1

9 10.7 11.7

11 11.9 12.8

1.0

9 18.2 19.2

11 16.7 18.1

0.01 13 16.5 17.1

15 17.1 17.9

17 18.2 18.6

and to mitigate the difficulty. The following procedure is suggested purely on intui-
tive considerations although it may be difficult to justify on theortical grounds:
draw a pilot sample of small size, say about m;=6, to estimate ¢. Then determine
mo and take mo—m, more observations as the first-stage sample. This paper at least

provides some insight into the problem of the first-stage sample size.

APPENDIX

Table 4 presents an example comparing the fitted distribution based on a log-
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normal assumption and the DSN frequencies observed in (2) in the SPRT of H,:

p=0 versus H, : p=1 with ¢=1 and ay=a1=0.01.

Table 4. Observed and Fitted Distributions of DSN

Sample Size Obs[afved Fitted Sample Size Observed Fitted

1 0 0.8 13 83 91.5
2 7 16.0 14 78 77.2
3 76 62.5 15 58 64.8
4 100 115.8 16 65 54.3
5 157 157. 8 17 45 45.3
6 187 180.0 18 38 37.8
7 183 184.5 19 31 31.6
8 177 176.8 20 29 26.4
9 157 161.9 21-25 92 79.5
10 139 144.1 26-30 39 33.4
11 119 125. 4 >31 36 27.9
12 107 107.7

From Table 4 we compute that x*>=20.83 with 21 degrees of freedom. (The first
and the second frequencies were grouped.) Thus we find that there is agreement

between the fitted and observed frequencies.
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SUMMARY

The two-stage sequential test, suggested by Baker (2] for testing hypotheses H;:
y=po and H, : p=p, of N(u,¢*) with the unknown ¢* would not be amenable for
applications unless some clues on the choice of the first-stage sample size are
available. The study in this paper is intended to shed some light on the size of the
first-stage sample. An approximate method is used to estimate an optimal initial
sample size that minimizes the average sample number. In brief, the optimal size
is a strictly monotone decreasing function of the quantity (g,—po)/s. Empirical
and simulation results are used to ascertain the negligible effect of possible errors

due to approximations and assumptions used.



