Kyungpook Math. J. Volume 13, Number 2 December, 1973

A NOTE ON &-SPACES

By M.K. Singal and Pushpa Jain

In [10] O'Meara has introduced a new class of topological spaces, called X -spaces. Following him, a regular T_1 space with a σ -locally finite k-network is called an X-space. A collection \mathcal{F} of subsets of X is said to be a k-network for X if for each compact subset K of X and each open subset U of X containing K there exists a finite union R of members of \mathscr{B} such that $K \subset R \subset U$. \mathscr{B} is said to be a pseudobase if for each compact subset K of X and each open subset U of X containing K there is a $B \in \mathscr{B}$ such that $K \subset B \subset U$. \mathscr{B} is said to be a network for X if for each $x \in X$ and each open subset U of X containing x, there is a $B \in \mathscr{B}$ such that $x \in B \subset U$. A space X with a countable pseudo-base is called an \aleph_0 -space by Michael [7], whereas a space X with a closed σ -locally finite network is called a σ -space by Okuyama [13]. The class of all σ -spaces contains the class of all \aleph_0 -spaces, and all subparacompact spaces (that is, spaces with the property that every open covering has a σ -discrete closed refine-

ment).

In [10,11] properties of \aleph -spaces parallel to \aleph_0 -spaces have been obtained. In the present note some sum theorems for X-spaces have been given. It is also proved that the image of an \aleph -space under a perfect mapping is an \aleph -space. In the end, we obtain a sufficient condition for an invertible space to be an X-space. Simple extension due to Levine [12] has also been considered for

X-spaces.

We shall first prove the locally finite sum theorem for X-spaces which states the following:

THEOREM 1. If $\{F_{\alpha} : \alpha \in \Omega\}$ is a locally finite closed covering of X such that each F_{α} is an X-space, then X is an X-space.

PROOF. Since each F_{α} is a regular T_1 space, therefore X is a regular T_1 space. Thus we shall only prove that X has a σ -locally finite k-network if each F_{σ}

• . .

204 M.K. Singal and Pushpa Jain

has a σ -locally finite k-network. For each $\alpha \in \Omega$ let $\mathscr{V}^{\alpha} = \bigcup_{n=1}^{\infty} \mathscr{V}_{n}^{\alpha}$ be a σ -locally finite k-network for F_{α} , where each \mathscr{V}_{n}^{α} is locally finite in F_{α} (and hence in X). Then $\mathscr{W} = \bigcup_{n=1}^{\infty} \mathscr{W}_{n}$, where $\mathscr{W}_{n} = \bigcup_{\alpha \in \Omega} \mathscr{V}_{n}^{\alpha}$ is a σ -locally finite k-network for X. For, let K be a compact subset of X and U an open subset of X such that $K \subset U$. Since every locally finite family is compact finite (that is, every compact subset intersects at most finitely many members of the family), therefore K intersects at most finitely many F_{α} 's say $F_{\alpha_{1}}, F_{\alpha_{2}}, \dots, F_{\alpha_{j}}$. Thus $K = \bigcup_{i=1}^{k} (K \cap F_{\alpha_{i}}) \subset U$. For each $i=1, 2, \dots, k, K \cap F_{\alpha_{i}}$ is a compact subset of $F_{\alpha_{i}}$ which is contained in an open subset $U \cap F_{\alpha_{i}} \circ F_{\alpha_{i}}$. Let R_{i} be a finite union of members of $\mathscr{V}^{\alpha_{i}}$ such that $K \cap F_{\alpha_{i}} \subset R_{i} \subset U \cap F_{\alpha} \subset U$. Therefore, $\bigcup_{i=1}^{k} R_{i}$ is a finite union of members of \mathscr{W} such that $K \subset \bigcup_{i=1}^{k} R_{i} \subset U$. Hence \mathscr{W} is a σ -locally finite k-network.

COROLLARY 1. Every disjoint topological sum of X-spaces is an X-space.

It has been proved by Hodel [3] that for any topological property P which is closed hereditary (that is a property, which when possessed by a space, is possessed by every closed subset of it) and which satisfies the locally finite sum theorem, the following theorems are true.

THEOREM 2. If \mathscr{V} is a σ -locally finite open covering of a space X such that the closure of each member of \mathscr{V} has the property P, then X has the property P.

THEOREM 3. Let X be a regular topological space and let \mathscr{V} be a σ -locally finite open covering of X such that each member of \mathscr{V} has the property P and the frontier of each member of \mathscr{V} is compact. Then X has the property P.

THEOREM 4. If \mathscr{V} is a σ -locally finite elementary covering of X such that each member of \mathscr{V} has the property P, then X has the property P. (For the definition of elementary covering see definition 1).

DEFINITION 1. [Hodel, 3]. A subset A of X is said to be *elementary* if it is open and if there exists a sequence $\{A_i\}_{i=1}^{\infty}$ of open subsets of X such that $A \subset \bigcup_{i=1}^{\infty} A_i$ and $\overline{A_i} \subset A$ for all *i*. A covering consisting of elementary sets is said to be an *elementary covering*.

A Note on X-Spaces 205

DEFINITION 2. [Y. Katuta, 4]. A family $\{A_{\alpha} : \alpha \in \Omega\}$ of subsets of X is said to be order locally finite if there is a linear ordering '<' of the index set Ω such that for each $\alpha \in \Omega$, the family $\{A_{\beta} : \beta < \alpha\}$ is locally finite at each point of A_{α} .

Every σ -locally finite family is order locally finite, but not conversely. In [13], Singal and Arya have proved some sum theorems for order locally finite open coverings of X. Let P be a topological property which is closed

hereditary and which satisfies the locally finite sum theorem, then the following two theorems hold.

THEOREM 5. Let \mathscr{V} be an order locally finite open covering of X such that the closure of each member of \mathscr{V} possesses the property P. Then X possesses P.

THEOREM 6. If \mathscr{V} is an order locally finite open covering of a regular space X such that each member of \mathscr{V} possesses the property P and the frontier of each member of \mathscr{V} is compact, then X has the property P.

Obviously Theorems 2 and 3 of Hodel follow as corollaries to Theorems 5 and 6: respectively.

Since the property of being an &-space is hereditary, therefore, in view of Theorem 1, we have the following theorems.

THEOREM 7. If \mathscr{V} is a σ -locally finite elementary covering of X such that each: $V \in \mathscr{V}$ is an \mathfrak{X} -space, then X is an \mathfrak{X} -space.

THEOREM 8. If \mathscr{V} is an order locally finite open covering of X such that the

closure of each member of \mathscr{V} is an \mathfrak{R} -space, then X is an \mathfrak{R} -space.

THEOREM 9. If \mathscr{V} is an order locally finite open covering of a regular space X such that each member of \mathscr{V} is an \mathfrak{X} -space and frontier of each member of \mathscr{V} is compact, then X is an \mathfrak{X} -space.

As a consequence of the locally finite sum theorem and the closed hereditary character of &-spaces, we deduce the following interesting results.

THEOREM 10. Let \mathscr{V} be a locally finite open covering of a regular space X such that each member of \mathscr{V} is an \aleph -space and frontier of each member of \mathscr{V} is Lindelöf. Then X is an \aleph -space.

PROOF. Let $\mathscr{V} = \{V_{\widehat{\alpha}} : \alpha \in \Omega\}$ be the given locally finite open covering of X. For each $\alpha \in \Omega$, Fr $V_{\widehat{\alpha}}$ is Lindelöf. Therefore there exists a countable subfamily $\{V_{\alpha_i} : i=1, 2, \cdots\}$ of \mathscr{V} which covers Fr V_{α} . Let $F_1 = \operatorname{Fr} V_{\alpha} \sim \bigcup_{i=2}^{\infty} V_{\alpha_i}$. Then F_1 is a

•

206 M.K. Singal and Pushpa Jain

closed subset of $\operatorname{Fr} V_{\alpha}$ (and hence of X) such that $F_1 \subset V_{\alpha_1}$. Since F_1 is Lindelöf and X is regular there exists an open set U_1 such that $F_1 \subset U_1 \subset \overline{U}_1 \subset V_{\alpha_1}$. \overline{U}_1 , being a closed subset of an X-space V_{α_1} , is an X-space. Suppose for each i=1,2, \cdots , n-1, there exists an open set U_i such that $F_i \subset U_i \subset \overline{U}_i \subset V_{\alpha_i}$ where $F_i = \operatorname{Fr} V_{\alpha} \sim [(\bigcup_{k=1}^{i-1} U_k) \cup (\bigcup_{k=i+1}^{\infty} V_{\alpha_k})]$ and \overline{U}_i is an X-space. Now let,

$$F_n = \operatorname{Fr} V_{\alpha} \sim [(\bigcup_{\substack{k=1 \ k=1}}^{n-1} U_k) \bigcup_{\substack{k=n+1 \ k=n+1}}^{\infty} V_{\alpha})]$$

Then F_n is a closed Lindelöf subset such that $F_n \subset V_{\alpha_n}$. Again, by regularity of X there exists an open set U_n such that $F_n \subset U_n \subset \overline{U}_n \subset V_{\alpha_n}$ and \overline{U}_n is an X-space. Thus by induction we obtain a family $\mathscr{U} = \{U_n : n \in N\}$ of open sets satisfying:

(a) \mathscr{U} is a covering of Fr V_{α} ,

(b) $\{\overline{U}_n; n \in N\}$ is locally finite.

Let $F_0 = \overline{V}_{\alpha} \sim \bigcup_{k=1}^{\infty} U_k$, then $\{\overline{U}_n; n \in N\} \cup \{F_0\}$ is a locally finite closed covering of \overline{V}_{α} each member of which is an \mathbb{X} -space. Hence by Theorem 1, \overline{V}_{α} is an \mathbb{X} -space. Thus $\{\overline{V}_{\alpha}: \alpha \in \Omega\}$ is a locally finite closed covering of X each member of which is an \mathbb{X} -space. Hence X is an \mathbb{X} -space, in view of Theorem 1. For details of the proof, see [14].

THEOREM 11. If \mathscr{V} be a locally finite open covering of a normal space X such that each $V \in \mathscr{V}$ is an \mathscr{R} -space, then X is an \mathscr{R} -space.

PROOF. Let $\mathscr{V} = \{V_{\alpha} : \alpha \in \Omega\}$. Since X is normal, there exists an open covering $\{U_{\alpha} : \alpha \in \Omega\}$ of X such that $\overline{U}_{\alpha} \subset V_{\alpha}$. Then $\{\overline{U}_{\alpha} : \alpha \in \Omega\}$ is a locally finite closed covering of X such that each \overline{U}_{α} is an \mathscr{K} -space. Hence X is an \mathscr{K} -space.

An open covering \mathscr{V} of X is said to be a normal open covering if there is a sequence $\{\mathscr{V}_n\}$ of open coverings of X such that each \mathscr{V}_n is a star-refinement of \mathscr{V}_{n-1} and \mathscr{V}_1 is a refinement of \mathscr{V} .

THEOREM 12. Let \mathscr{V} be a normal open covering of a normal space X. Then X is an \mathscr{X} -space if each $V \in \mathscr{V}$ is an \mathscr{X} -space.

PROOF. Since \mathscr{V} is a normal open covering of the normal space X, therefore \mathscr{V} admits of a locally finite open refinement [8, Theorem 1.2.]. Hence the

A Note on X-Spaces

207

A .

result follows in view of Theorem 11.

•

THEOREM 13. If \mathscr{V} be a point finite open covering of a collectionwise normal space such that each member of \mathscr{V} is an \mathcal{R} -space, then X is an \mathcal{R} -space.

PROOF. The result follows in view of Theorem 11 and the fact that in a collectionwise normal space, every point finite open covering has a locally finite open refinement [6].

THEOREM 14. Let \mathcal{V} be a σ -locally finite open covering of a normal space X

such that each $V \in \mathscr{V}$ is an F_{σ} -subset of X. If each $V \in \mathscr{V}$ is an \mathscr{R} -space, then X is an \mathscr{R} -space.

PROOF. By Theorem 1.2 in [8], \mathscr{V} is a normal covering. Hence the result follows in view of Theorem 12.

THEOREM 15. Let \mathscr{V} be a σ -locally finite open covering of a countably paracompact normal space X such that each member of \mathscr{V} is an \mathfrak{R} -space. Then X is an \mathfrak{R} -space.

PROOF. Since every σ -locally finite open covering of a countably paracompact normal space is normal (see [9]), the result follows in view of Theorem 12 above.

THEOREM 16. Let X be a regular space which is the union of two sets A and B' such that A is nonempty compact and B is paracompact. If \mathscr{V} be an open covering of X such that each $V \in \mathscr{V}$ is an \mathscr{K} -space, then X is an \mathscr{K} -space.

PROOF. Let $\mathscr{V} = \{V_{\alpha} : \alpha \in \Omega\}$. For each $x \in A$ there is an $\alpha_x \in \Omega$ such that $x \in V_{\alpha_x}$. Since X is regular, let U_{α_x} be an open subset of X such that $x \in U_{\alpha_x} \subset U_{\alpha_x}$.

 $\overline{U}_{\alpha_{x}} \subset V_{\alpha_{x}}$. Let $\{U_{\alpha_{x_{1}}}, \dots, U_{\alpha_{x_{s}}}\}$ be a finite subfamily of $\{U_{\alpha_{x}} : x \in A\}$ such that $A \subset \bigcup_{i=1}^{n} U_{\alpha_{x_{1}}} \cdot A$ lso, each $\overline{U}_{\alpha_{x_{i}}}$, being a subset of $V_{\alpha_{x_{i}}}$ is an \mathbb{X} -space. Let F = X $\sim \bigcup_{i=1}^{n} U_{\alpha_{x_{i}}}$. Then F is a closed subset of X which is contained in B and hence F is a regular paracompact space. Therefore the covering $\{F \cap V_{\alpha} : \alpha \in \Omega\}$ of F has a locally finite (in F and hence in X) closed (in F and hence in X) refinement \mathbb{X} . The covering $\mathcal{W} = \{U : U \in \mathbb{X}\} \cup \{\overline{U}_{\alpha_{x_{i}}} : i=1,2,\dots,n\}$ is then a locally finite closed covering of X such that each $W \in \mathcal{W}$ is an \mathbb{X} -space. Hence X is an \mathbb{X} -space in view of Theorem 1.

THEOREM 17. Let X be a collectionwise normal space and let X be the union of two sets A and B such that A is paracompact and closed and B is paracompact. If \mathscr{V} is an open covering of X such that each $V \in \mathscr{V}$ is an \aleph -space then X is an

208 M.K. Singal and Pushpa Jain

X-space.

PROOF. Let $\mathscr{V} = \{V_{\alpha}: \alpha \in \Omega\}$. Since A is paracompact, the open covering $\{A \cap V_{\alpha}: \alpha \in \Omega\}$ of A has a locally finite open refinement $\{U_{\beta}: \beta \in \Gamma\}$. Since X is collectionwise normal, therefore by Lemma 1 in [1] there exists a locally finite open covering $\{W_{\beta}: \beta \in \Gamma\}$ of X such that $A \cap W_{\beta} \subset U_{\beta}$ for each $\beta \in \Gamma$. For each $\beta \in \Gamma$, let $\alpha(\beta) \in \Omega$ such that $U_{\beta} \subset A \cap V_{\alpha(\beta)}$. Let $G_{\beta} = W_{\beta} \cap V_{\alpha(\beta)}$. Then $\mathscr{Y} = \{G_{\beta}: \beta \in \Gamma\}$ is a locally finite open collection which covers A. Since X is regular, there exists a locally finite open collection $\mathscr{H}' = \{H_{\delta}: \delta \in A\}$ which covers A and is such that each H_{δ} is contained in some G_{β} . Let $F = X \sim \bigcup \{H_{\delta}: \delta \in A\}$. Then F is a closed subset of X which is contained in B, and hence is paracompact. As above, we obtain a locally finite closed collection \mathscr{H}'' which covers F and such that each member of \mathscr{H}'' is an \mathbb{X} -space. Thus $\mathscr{H} = \{H_{\delta}: \delta \in A\} \cup \mathscr{H}'''$ is a locally finite closed covering of X such shat each member of \mathscr{H}'' is an \mathbb{X} -space. Hence X is an \mathbb{X} -space.

THEOREM 18. Let $\mathscr{F} = \{F_n: n=1, 2, \dots\}$ be a countable family of closed subsets of X such that $\bigcup \{F_n^o: n=1, 2, \dots\} = X$. If each F_n is an \mathscr{K} -space, then X is an \mathscr{K} -space.

PROOF. Since F_n is a closed subset, therefore $F_n^{\circ-}$ is contained in F_n and hence is an \mathcal{X} -space. Thus $\{F_n^{\circ}: n=1, 2, \dots\}$ is a σ -locally finite open covering of Xsuch that each $F_n^{\circ-}$ is an \mathcal{X} -space. Hence the result follows in view of Theorem 2.

DEFINITION 3. [Frolik, 2]. A space X is said to be *weakly regular* if every

non-empty open subset of X contains a non-empty regularly closed set.

THEOREM 19. Every space which contains a proper, nonempty regularly closed subset is an $\$ -space if and only if every regularly closed subset of X is an $\$ -space.

PROOF. The 'only if' part is obvious. We shall, therefore, prove the 'if' part. Let X be a space containing a proper nonempty regularly closed set U. Therefore $U=U^{\circ-}$. Let $U^{\circ}=V$. Then V is contained in U and so \overline{V} is a proper regularly closed subset of X where V is regularly open. Thus $X=\overline{V} \cup (X\sim V)$, where V and $X\sim V$ are both X-spaces. Hence X is an X-space.

COROLLARY 2. A weakly regular space X is an X-space if and only if every proper regularly closed subset of X is an X-space.

COROLLARY 3. A semi-regular space X is an $\-$ space if and only if every proper regularly closed subset of X is an $\-$ space.

A Note on X-Spaces 209

A mapping $f: X \to Y$ is called a perfect mapping if it is closed, continuous and such that $f^{-1}(y)$ is compact for each $y \in Y$.

THEOREM 22. Let $f: X \to Y$ be a perfect mapping. Then Y is an X-space if X is so.

PROOF. Let X be an \mathfrak{X} -space and let $\mathscr{V} = \bigcup_{n=1}^{\infty} \mathscr{V}_n$ be a σ -locally finite k-network for X. We shall prove that $\mathscr{W} = \bigcup_{n=1}^{\infty} \mathscr{W}_n$, where $\mathscr{W}_n = \{f(V) : V \in \mathscr{V}_n\}$ is a σ -locally finite k-network for Y. Since f is continuous, each \mathscr{W}_n will be locally finite in Y. To prove that \mathscr{W} is a k-network for Y, let K be a compact subset of Y and U be an open subset of Y such that $K \subset U$. Since f is a closed continuous mapping with $f^{-1}(y)$ compact for each $y \in Y$, therefore $f^{-1}(K)$ is a compact subset of X contained in the open set $f^{-1}(U)$. Let R be a finite union of members of such that $f^{-1}(K) \subset R \subset f^{-1}(U)$. Thus $K \subset f(R) \subset U$ and f(R) is a finite union of members of \mathscr{W} . Hence Y is an \mathfrak{X} -space, since it is regular also as X regular.

DEFINITION 4. [Doyle and Hocking, 2]. A space X is said to be an *invertible* space if for each open subset U of X there is a homeomorphism $h: X \to X$ such that $h(X-U) \subset U$. h is called an *inverting homeomorphism* for U.

THEOREM 23. Let X be a topological space invertible in one of its non-empty open subsets U and let \overline{U} be an \mathbb{R} -space, then X is an \mathbb{R} -space.

PROOF. Let f be an inverting homeomorphism for U. Then $f(\overline{U})$ is closed and $X = \overline{U} \cup f(\overline{U})$. Since \overline{U} and $f(\overline{U})$ are X-spaces, therefore by Theorem 1, X is

an X-space.

DEFINITION 5. [Levine, 12]. Let (X, τ) be any topological space. Then the topology $\tau(A) = \{U \cup (V \cap A): U, V \in \tau\}$ where $A \notin \tau$, is called a *simple extension* for τ . Obviously $A \in \tau(A)$. As is easily verified, $(A, \tau \cap A) = (A, \tau(A) \cap A)$ and $(X-A, \tau \cap (X-A)) = (X-A, \tau(A) \cap (X-A))$.

THEOREM 24. Let (X, τ) be an \mathbb{R} -space and A be a closed subspace of (X, τ) . Then $(X, \tau(A))$ is an \mathbb{R} -space.

PROOF. Since (X, τ) is an \mathscr{X} -space, therefore $(A, \tau \cap A)$ and $(X-A, \tau \cap (X-A))$ are \mathscr{X} -space. But $(A, \tau \cap A) = (A, \tau(A) \cap A)$ and $(X-A, \tau(A) \cap (X-A)) = ((X - A), \tau \cap (X - A))$. Thus X is the union of two $\tau(A)$ -closed \mathscr{X} -spaces A and X-A. Hence $(X, \tau(A))$ is an \mathscr{X} -space.

•

210 .

1.0

M.K. Singal and Pushpa Jain

Institute of Advanced Studies, Meerut University, Meerut (India).

and

Maitreyi College, Netaji Nagar, New Delhi-23, (India)

<u>,</u> 7

- [1] C.H. Dowker, On a theorem of Hanner. Ark. Mat. 2(1952), 307-313.
 [2] P.H. Doyle, and J.G. Hocking, Invertible spaces. Amer. Math. Monthly 68 (1961), 959-965.
- [3] Z. Frolik, Generalizations of compact and Lindelöf spaces. Czech. Math. J. 9 (1959). 172-217.
- [4] R.E. Hodel, Sum theorems for topological spaces. Pacific J. Math. 30 (1969), 59-66.
- [5] Y. Katuta, A theorem on paracompactness of product spaces. Proc. Japan. Acad. 43⁻ (1967), 615-618.
- [6] E. Michael, Point finite and locally finite coverings. Canad. J. Math. 7 (1955), 275-279.
 [7] E. Michael, ℵ₀-spaces. J. Math. Mech. 15 (1966), 983-1002.
- [8] K. Morita, Paracompactness and product spaces. Fund. Math. 50 (1961), 223-236.
- [9] K. Morita, Products of normal spaces with metric spaces. Math. Annalen, 154(1964), 365-382.
- [10] P.O'Meara, On paracompactness in function spaces with compact open topology. Proc. Amer. Math. Soc. 29 (1971), 183-189.
- [11] P.O'Meara, X-spaces. To appear.
- [12] N. Levine, Simple extensions of topologies. Amer. Math. Monthly, 70 (1963), 22-25.
 [13] A. Okuyama, Some generalizations of metric spaces, their metrization theorems and product spaces. Sci. Rep. Tokyo Kyoiku Daigaku Sec. A 9 (1968), 236-254.
 [14] M.K. Singal, and Pushpa Jain, On subparacompact and countably subparacompact spaces. Bull. Aust. Math. Soc. (1971).
- [15] M.K. Singal, and Shashi Prabha Arya, Two sum theorems for topological space. Israel
 J. Math. 8 (1970), 155-158.

· ·