Kyungpook Math. J.
Volume 13, Number 1
June, 1973

A RELATION SATISEIED BY SOLUTIONS OF THE ADJOINT EQUATION

By W.J. Kim

Let $y_{1}, y_{2} \cdots, y_{n}$ be n linearly independent solutions of the differential equation

$$
\begin{equation*}
y^{(n)}+p_{n-1} y^{(n-1)}+\cdots+p_{0} y=0, \tag{1}
\end{equation*}
$$

where $p_{i} \in C^{i}, \quad i=0,1, \cdots, n-1$, and let $W=\left|y_{j}^{(i-1)}\right|_{i, j=1}^{n}$ be the Wronskian. It is well-known [1] that

$$
v=\frac{1}{W}\left|\begin{array}{cccc}
y_{1} & y_{2} & \cdots & y_{n-1} \tag{2}\\
y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n-1}^{\prime} \\
& & \cdots \cdots & \\
y_{1}^{(n-2)} & y_{2}^{(n-2)} & \cdots & y_{n-1}^{(n-2)}
\end{array}\right|
$$

is a solution of the adjoint equation

$$
\begin{equation*}
v^{(n)}-\left(p_{n-1} v\right)^{(n-1)}+\left(p_{n-2} v\right)^{(n-2)}-\cdots+(-1)^{n} p_{0} v=0 . \tag{3}
\end{equation*}
$$

We shall prove the following generalization of (2).
THEOREM 1. If $y_{1}, y_{2}, \cdots, y_{n}$ are n linearly independent solutions of (1), there exist n linearly independent solutions $v_{1}, v_{2}, \cdots, v_{n}$ of (3) such that

$$
\begin{align*}
& \left|\begin{array}{lllll}
v_{1} & v_{2} & \cdots & v_{k} \\
v_{1}^{\prime} & v_{2}^{\prime} & & \cdots & v_{k}^{\prime} \\
& & \cdots \cdots & \\
v_{1}^{(k-1)} & v_{2}^{(k-1)} & \cdots & v_{k}^{(k-1)}
\end{array}\right|=\frac{1}{W}\left|\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{n-k} \\
y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n-k}, \\
& & \cdots \cdots & \\
y_{1}^{(n-k-1)} & y_{2}^{(n-k-1)} & \cdots & y_{n-k}^{(n-1)}
\end{array}\right| \tag{4}\\
& k=1,2, \cdots, n-1 .
\end{align*}
$$

For the proof of this theorem, we require a few results from the theory of determinants. Each element $a_{i j}$ of the determinant $D=\left|a_{i j}\right|_{i, j=1}^{n}$ has a cofactor $A_{i j}$. Put $\Delta=\left|A_{i j}\right|_{i, j=1}^{n}$. Then it is easily confirmed that $D \Delta=D^{n}$. If $D \neq 0$, we have

$$
\begin{equation*}
\Delta=D^{n-1} . \tag{5}
\end{equation*}
$$

If ($n-m$) rows and $(n-m)$ columns in D are deleted, there results an $m \times m$
determinant $M=\left|a_{r_{i}, s_{j}}\right|_{i, j=1}^{m}$. This determinant M is called an m th-order minor of D, On the other hand, if we delete from D the rows and columns to which the elements of M belong, we get an $(n-m) \times(n-m)$ determinant $N . N$ is called the complement of M. The algebraic complement \bar{M} of an m th-order minor M is defined to be $(-1)^{r_{1}+\cdots+r_{m}+s_{1}+\cdots+s_{m}} N$.

LEMMA 1[3]. Let \mathfrak{M} be a pth-order minor of Δ, and M the corresponding minor of D (i.e., M has the same row and column indices as \mathfrak{M}). Then

$$
\mathfrak{K}=D^{p-1} \bar{M}
$$

provided $D \neq 0$.
Let \mathbb{S}_{n} be the set of all permutations of the integers between 1 and n. Then

$$
D=\sum_{\pi \in \mathbb{S}_{.}}(\operatorname{sgn} \pi) a_{1 \pi(1)} a_{2 \pi(2)} \cdots a_{n \pi(n)}
$$

where $\operatorname{sgn} \pi$ is +1 or -1 according as π is even or odd. From this representation of D, we easily deduce the following lemma.

LEMMA 2.

$$
D=\left|a_{i j}\right|_{i, j=1}^{n}=\left|(-1)^{i+j} a_{i j}\right|_{i, j=1}^{n}=\left|a_{n+1-i, n+1-j}\right|_{i, j=1}^{n}
$$

We are now ready for the proof of Theorem 1.
Proof of Theorem 1. Let $\sigma_{i j}$ be the minor of $y_{j}^{(i-1)}$ in W. Then $v_{k}=\sigma_{n, n+1-k} / W$, $k=1,2, \cdots, n$, are solutions of (3) [1]. To prove the linear independence, it suffices to show that the Wronskian $\mathfrak{B}=\left|v_{j}^{(i-1)}\right|_{i, j=1}^{n}$ does not vanish. Put $\mathfrak{B}_{k}=$ $\left|v_{j}^{(i-1)}\right|_{i, j=1}^{k}$ and $\Sigma_{k}=\left|\sigma_{i j}\right|_{i, j=k}^{n}$. Then it is easily confirmed that

$$
\begin{equation*}
\mathfrak{F}_{k}=\frac{1}{W^{k}} \Sigma_{n+1-k}, k=1,2, \cdots, n \tag{6}
\end{equation*}
$$

Hence,

$$
\mathfrak{W}=\mathfrak{B}_{n}=\frac{1}{W^{n}} \Sigma_{1}=\frac{1}{W^{n}} W^{n-1}=\frac{1}{W},
$$

the third equality following from (5) and Lemma 2. Therefore, the Wronskian Wi does not vanish.

By Lemmas 1 and 2, we have

$$
\begin{equation*}
\Sigma_{n+1-k}=W^{k-1}\left|y_{j}^{(i-1)}\right|_{i, j=1}^{n-k} \tag{7}
\end{equation*}
$$

$k=1,2, \cdots, n-1$. From (6) and (7), we conclude

$$
\mathscr{B}_{k}=\frac{1}{W}\left|y_{j}^{(i-1)}\right|_{i, j=1}^{n-k},
$$

$k=1,2, \cdots n-1$, establishing (4).
We remark that (4) holds for $k=n$ if we set $\left|y_{j}^{(i-1)}\right|_{i, j=1}^{0}=1$.
A solution y of (1) is said to have a zero of order k at ξ if $y(\xi)=y^{\prime}(\xi)=\cdots$ $=y^{(k-1)}(\xi)=0$: if further $y^{(k)}(\xi) \neq 0$. we say that y has a zero of order exactly k at ξ.

THEOREM 2. If (1) has a nontrivial solution y with a zero of order k at ξ and a zero of order $n-k$ at ζ, then (3) has a nontrivial solution v with a zero of order $n-k$ at ξ and a zero of order k at ζ.

PROOF. Let $y_{1}, y_{2}, \cdots, y_{n}$ be solutions of (1) satisfying $y_{j}^{(n-i)}(\xi)=\delta_{i j}, i, j=1,2$, \cdots, n. Then the v_{k}, as defined in Theorem 1, satisfies

$$
\begin{equation*}
v_{k}(\xi)=v_{k}^{\prime}(\xi)=\cdots=v_{k}^{(n-k-1)}(\xi)=0, \tag{8}
\end{equation*}
$$

$k=1,2, \cdots n-1$. Since the y has a zero of order k at $\xi, y=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n-k} y_{n-k}$ for some constants $c_{1}, c_{2}, \cdots, c_{n-k}$, not all zero. Furthermore, $\left|y_{j}^{(i-1)}(\zeta)\right|_{i, j=1}^{n-k}=0$ because the y has a zero of order $n-k$ at ζ. In view of (4), this implies $\left|v_{j}^{(i-1)}(\zeta)\right|_{i, j=1}^{k}=0$. Hence, there exists a set of constants $C_{1}, C_{2}, \cdots, C_{k}$ such that $v=C_{1} v_{1}+\cdots+C_{k} v_{k}$ is a nontrivial solution of (3) with a zero of order k at ζ. That this v has a zero of order $n-k$ at ξ is immediate from (8).

Sherman [5, Theorem 10] obtained a similar result under the stronger condition that y have a zero of order exactly k at $\hat{\xi}$ and a zero of order $n-k$ at ζ.

The equation
$\left(3 \sin ^{2} x \cos ^{2} x-2\right) y^{\prime \prime \prime}-6 \sin x \cos x\left(\cos ^{2} x-\sin ^{2} x\right) y^{\prime \prime}-\left(9 \sin ^{2} x \cos ^{2} x+14\right) y^{\prime}=0, \quad$ (9) where $3 \sin ^{2} x \cos ^{2} x-2<0$, has three linearly independent solutions $\sin ^{2} x \cos x$, $\cos ^{2} x \sin x$, and 1 [6]. The solution $\cos ^{2} x \sin x$ has double zeros at $-\pi / 2$ and $\pi / 2$. Therefore, (9) cannot have a solution with a zero of order exactly 1 at $-\pi / 2$ and a zero of order 2 at $\pi / 2$. This example shows that the condition in $[5$, Theorem 10] is indeed stronger than that in Theorem 2.

Suppose $p_{0}, p_{1}, \cdots, p_{n-1}$ in (1) are real-valued, continuous functions defined on an interval I. For the even-order equation $(n=2 m$), we say that (1) is
discorjugate in the sense of Reid [4] on I if none of its nontrivial solutions have two m th-order zeros on I. By Theorem 2 we see that (1) is disconjugate in the sense of Reid if and only if (3) is disconjugate in the sense of Reid. Moreover, if $P_{i} \in C^{i}(I)$, (3) may be cast into the form of (1);

$$
v^{(n)}+q_{n-1} v^{(n-1)}+\cdots+q_{0} v=0,
$$

where

$$
\begin{equation*}
q_{i}=\sum_{k=i}^{n-1}(-1)^{n-k}\binom{k}{i} p_{k}^{(k-i),} \tag{10}
\end{equation*}
$$

$i=0,1, \cdots, n-1$. Since (1) with $n=2 m$ is known to be disconjugate in the sense of Reid on $(-c, c)$ if

$$
\sum_{k=1}^{m} \frac{\left|P_{2 m-k}(x)\right|}{k!}(c+|x|)^{k}+\sum_{k=m+1}^{2 m} \frac{\left|p_{2 m-k}(x)\right|}{k!}(c-|x|)^{k-m}(c+|x|)^{m} \leq 1
$$

[2, Theorem 2.3], we have the following result.
THEOREM 3. Assume that $p_{i} \in C^{i}, i=0,1, \cdots, 2 m-1$, is a real-valued function defined on $(-c, c)$. The differential equation

$$
y^{(2 m)}+p_{2 m-1} y^{(2 m-1)}+\cdots+p_{0} y=0
$$

is disconjugate in the sense of Reid on $(-c, c)$ if

$$
\sum_{k=1}^{m} \frac{\left|q_{2 m-k}(x)\right|}{k!}(c+|x|)^{k}+\sum_{k=m+1}^{2 m} \frac{\left|q_{2 m-k}(x)\right|}{k!}(c-|x|)^{k-m}(c+|x|)^{m} \leq 1
$$

where $q_{0}, q_{1}, \cdots, q_{2 m-1}$ are defined as in (10) with $n=2 m$.
By using Theorem 3, the differential equation

$$
\begin{equation*}
y^{(2 m)}+\left[\frac{(2 m-1)!}{2\left(1-x^{2}\right)^{m-1}} y\right]^{\prime}=0 \tag{11}
\end{equation*}
$$

is easily shown to be disconjugate in the sense of Reid on $(-1,1)$. However, Theorem 2. 3 in [2] is inconclusive as to the disconjugacy of (11).

State University of New York
Stony Brook, New York 11790

REFERENCES

[1] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Company, Inc., New York, 1955.
Prob. 19, p. 101.
[2] W.J. Kim, Disconjugacy and nonoscillation criteria for linear differential equations, J. Differential Equations 8 (1970), 163-172.
[3] G. Kowalewski, Einfilhrung in die Determinantentheorie, 3rd ed., Chelsea Publishing Company, New York, 1948. Satz 28, p. 73.
[4] W.T. Reid, Oscillation criteria for self-adjoint differential systems, Trans. Amer. Math. Soc. 101 (1961), 91-106.
[5] T.L. Sherman, Properties of solutions of nth-order linear differential equations, Pacific J. Math. 15 (1965), 1045-1060.
[6] T.L. Sherman, On a theorem of Azbelev and Caljuk, Proc. Amer. Math. Soc. 21 (1969), 63.

