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EPIREFLECTIVE SUBCATEGORIES OF PARTIALLY ORDERED 
TOPOLOGICAL SPACES 

By Tae Ho Choe1l and O. C. Garcia 

Introduction and Notation: In this paper we consider the categories PTop and 

HOTS 01 all partially ordered topological spaces, and all continuously partially 

order려 묘。usdorff spaces, respectively, with the continuous, isotone functions as 

their rncrphisms. 

Let ’I’ûp be the category of topological spaces, H of Hausdorff spaces, Cr of 

completely regular spaces and C of compact (and Hausdorff) spaces. For a full 
subcategory K of Top, we denote by KPTop the full subcategory of PTop 

consisting of all the objects whose underlying space belongs to K. Similarly we 

denote by KOTS the full subcategory of HOTS consisting of all objects whose 
underlying space belongs to K. 

Firstly, we show that PTop is a complete, locally and colocally small category 
and find some important epireflective subcategories of PTop. The subcategories 

KOTS of 묘OTS which are epireflective are exactly those for which K is epirefle

ctive in H. 

Secondly, introducing the category of all completely regular ordered topological 

spaces [7] and its subcategory CrORR, of all such spaces as defined in [7] , we 

show that every object in CrORR can be characterized as a subspace of an object 

in COTS. and that CrORR is epireflective in PTop. 

Finaìly, we consider the sets I 1X and C1X of all continuous, isotone functions 

from X into the unit interval of the reals and into the reals, respectively. For 

xεCrO짧R we define β1X and u1X in the same way as the Stone-Cech eom

pactification and Realcompactificaton of X , respectively. 

1. General EpirefIexions. 

Let X be a set, (Yi)iε[ a family of objects of PTop, and 좌:X→Yi a family 

of functions which separates the points of X. Then X has an initial PTop 

structure with respect to (fi)ε[' Indeed, we consider the initial topology on X 

1) This research was supported by NRC Grant A4809, can때a. 



, 

98 Tαe Ho Choε αηd O. C. Garcia 

with respect to the family (fi\E[ and define a partial order on X by a<'xb if 

and on1y if ￡(a)〈자(b) for all iε1. Clearly <'x is a partial order. and one easily 

sees that (X. <'x) has the initial PTop structure with respect to (fz.)iε[' 

The proof for our next lemma follows directly from the above remark. 

LEMMA 1. 11 (Xi)iE[ z's a lamz'ly in PTop. there exists a product IIiE[XiεP’I’op 
and zf XεPTop and S is a subset 01 X. the inclusion i:S• X induces a PTop
$ubspace 01 x. 

LEMMA 2. The category PTop is complete. Moreover. zf K is a productz've. closed 

hereditary subcategoηI 01 Top. KP’I ’op is complete. 

PROOF. Considering [4J. it is sufficient to show that PTop has equalizers. 
f 

'Given X :Y in PTop. the subspace K of X induced on {x든Xi/(x)=g(x)} by 
g 

its inclusion map i:K• X is a ,PTop-equalizer of 1. g as one can easily check. 

LE l\1MA 3. Let (Xi• <.씨ε[ be a lamily 01 PTop-spaces. On the underlyz'1zg set 01 
the t o.ψological space I1iε[Xi we diline the lollowing partz'al order: (x. i) <(y.j) il 

and only il x<'i y and i=j. Then (Uiε[Xi. <.) is the coproduct I1iE/Xi' <i) 껴 

PTop. 

PROOF. Let (si)깥[ be the family of natural injections. s/Xj→UiεIXi and six) 

= (x. j). we show that (I1iE1X i• <J has the final PTop-structure with respect to 

(Si)i든[' Let ZεPTop and g: (I1iε:Xi• <J• Z be a map. Suppose gosi is continuous 

and isotone for each iE1. Since I1iεIXi has the final topology with respect to (한)iEI 

g is continuous. Let (x. i)<:Cy. j) in (I1iE1X i• <). Then i=j and x<iY' Since gosi 

is isotone. g(x. i)=gosi(x) <,gosi(y)=g(y. i)=g (y. j). 

REMARK. Having had [4] a characterization of the epireflective subcategories 
of a category K. whenever K is complete. locally small and colocally small. we 

are interested in these last two properties for PTop. 

LEMMA 4. The category PTop is locally and colocally small. 

PROOF. It is sufficient to show that the monomorphisms in PTop are injective 

(1 : 1) and the epimorphisms surjective (onto). because then given m:X• Ya 

monomorphism. we can always induce an isomorphic copy of X on a subset of Y 
(and there is only a set of such spaces). Similarly for epimorphisms. 
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Let m:X• Y be a monomorphism, a, b in X and m(a)=m(b). We define g , h: 

X • X by g(x)=a and h(x)=b for all xεX. Since g and h are continuous isotone 

maps, mog=mo!z, and m is a monomorphism, g=h and therefore a=b. 

Let e:X• Y be an epimorphism, and R the equivalence relation defined on Y IlY by: 

R= {((e(x) , 1), (e(x) ， 2))JxεX} U {( (e(x) , 2) , (e(x) , 1)) i xEX} ULJy Ily 

Define on (YIlY)1 R: (a, i) R<R(b, j) R if and only if (a, i)<'(b, j) , or there exists 

cεX such that a<.e(c) and e(c)<b. It ls easy to check that <'R is a well defined 

partial order and νR:YIlY→(YIlY)1 R is continuous and isotone. If we denote by 

(}'l and 0'2 the canonical injections Y • Y IlY we have: 

ν'R'o O'loe(x) = (e(x) , 1) R= (e(x) , 2) R=νR00'2oe(X) for all xεx. 

It follows that νROO' 1 oe = J) ROO' 2oe, and, since e is an epimorphism, νROO'l=νR00'2. 

This means that for an arbitrary yεY， we have (y, l)R=(y, 2)R andby the 

definition of R , yεIm e. 

REMARK. In accordance with Ward Jr. [10] , we shall say that if (X, <.)εPTop， 

the partial order <. is semicon경nuous if whenever a<.b in X there exist two open 
neighbourhoods U of a and V of b such that μ<，þ and a<.v for all uEU and vεV. 

We shall denote by POTS the class of PTop spaces whose partial order is semi
continuous, and by KPOTS the intersection of KPT’op with POTS. 

The partial order <. shall be called conti1Zμoμs if whenever a<,þ in X , there exist 

two open neighbourhoods U of a and V of b such that u<.v for all μεUand νεV. 

Every space in POTS having continuous partial order is already Hauså.orff [10]. 
We denote by HOTS the the class of POTS spaces whose partial order iscontinuous. 

THEOREM 1. The categories HPTop, HPOTS and HOTS are epireflective Ï1z 

PTop; 

PROOF. By Lemmas 2 and 4 it suffices to show [4] that these subcategories 
of PTop are strongly closed with respect to products and equalizers. 

From the structure of the products in PTop given in Lemma 1, since H is closed 

under products in Top, so is HPTop under products in PTop. Given a family 

(Xs)ses m HPOTS (ROTS) it is not diffiC111t to see that the partia1 order of 

IIsESXsεPTop is semicontinuous (continuous). 

@nsider x ￡Y in PTop with XgHPTop (or HPOTS, 뼈OTS). Since K = 

{xεXJf(x)=g삶} CX and X is Hausdorff, KεHPTop. If XEHPOTS (or HOTS) , 

since the semicontinuity (continuity) of the partial order is obviouslya hereditary 
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property, we concIude that kεHPOTS Cor HOTS) , and the proof is complete. 

THEOREM 2. If K is a subcategory of H, the following statements are 
equz'valent: 

1) K is ePi1’ eflective z'n H 
2) KPTop is epz'reflectiνe z'n HP’I ’op 

3) KPOTS is epiγeflectz've in HPOTS 

4) KOTS is epz'reflectz've z'n 묘OTS. 

PROOF. Let K be epireflective in 표. Since K is productivè and closed hereditary 
KPTop is complete. One showsas in Theorem 1 that KPTop is strongly closed 
with respect to products and equalizers in JPTop. Therefore KPTop is epireflective 

in PTop and consequently in 묘PTop also. Sincc ìve know from Theorem 1 that 

HPOTS is epireflective in PTop, the intersection KPOTS of KPTop and 묘POTS 
is epireflective in HPTop and so also in 묘POTS. Similarly, if KPTop is epireflec

tive m HPTop, one conchldes that 표θTS is epireflective in BOTS. 

Suppose KPOTS is epireflective in HPOTS. Let CXi)i르j be a family in K. By 
considering U X i= CXi, d) where d is the discrete partial order, since KPOTS is 

productive, ITi드pXiε KPOTS. Since IIiEPXi has IIiεjXi as its underlying topo
f 

logical space, IIiεjXiEK. Let X :Y be given in H ~ith XεK， we consider E the 
g 

f 
equalizer of CX, d) :Cy, d) in RPOTS, where, CX, d) εKPOTS. Since E inherits 

g 

the discrete order, its underlying topolüσical space together with the inclusion into 
f 

X is an equalizer of X: 

implies 1). 

:Y in K. By [4J , K is epireflective in H. Similarly, 4) 
g 

2. Complete regularization. 

DEFINITION 1. Let EEPTop. We call a space XεPTop E-reg씨ar if there 
S exists a set S and a PTop-embedding e: X • E V

• We call an E-regular space E-

compact if eX is closed in E S
• We denote by ErOT and EeOT the classes of E

regular and E-compact spaces of PTop, respectively •. 

The following definition is due to Nachbin. 

DEFINITION 2. For XεPTop， X is called a completely regular ordered sprice if: 

1) if aεX and if V designates a neighbourhood of a, there exist two continuous 
realvalued functions f and g on X , where f is increasing (isotone) and g 

decreasing such that 
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O<f<l, O<g<J 

f(a) = 1, g(a) = 1 

inf [f(x) , g(x)] =0 if xεX\V 

2) if a, bεX and “a<þ" is false, there exists a continuous increasing, realvalued 

function f on X such that f(a)> f(b). 

We denote by CrOR the category of completely regular ordered spaces as given 

in the above definition. 

LEMMA 5. IrOTCCrORCCrOTS 

PROOF. Let XεIrOT， and S be a set such that X is a subspace of 15
• By 

[7], Theorem 7 p.55, we have XεCrOR. If XεCrOR it fo l1ows by [7] Prop. 8 

p.59 and [10] Lemma 1 p.145, that X has a continuous partial order, and by 

[7] Prop. 6 p.53, that the underlying topological space of X is completely regular. 

THEOREM 3. Let X be an space in PTop. X is I-regular if and only if the 

evalztatz"on ηZaφ j:X• J11X gz'ven by j(x) (f) =f(x) is an embedding. 

S PROOF. Let X be l-regular. Let e:X• r be an embedding and x :;i;y two 

elements of X. Since e is an embedding, e(x) :;i;e(y) and psoe(x) :;i;psoe(y) for some 

S드S. Since psoeεI1X ￦e obtain j(x) (psoe) :;i;j(y) (psoe) and j(x) :;i;j(y). Thereforej 

11X is an injective map. To see that j is a continuous and isotone map, we remark that 1 
has the product structure and for every flεI1X the f-projection of j is f , a continuous 

and isotone map. Suppose now that j(x) <j(y). Then for every sεS， e(x)(s)= 

(psoe)(x) =j(x) (psoe) <j(y) (psoe) =e(y) (s) , and we obtain e(x) <e(y). Sincee is an 
embedding, x <1. 

To complete the proof that j is an embedding it is not difficult to show that j 
is open in its image. 

COROLLARY 1. Let X be a space in PTop. X is R-regular if and only if the 

evalztation map p: X • RC1X given by p(x)(j)=f(x) is an embedding. 

PROOF. As Theorem 3. 

THEOREM 4. Every comp!etely regular topological space (with the dz'screte order) 

is l-regμla1’· 

PROOF. Let X be a completely regular space. As is well known, the evaluation 
j: X • l C

(X, 1) is a Top-embedding, and since the order in X is assumed to be 

discrete, l 1X =C(X, 1) (the set of all continuous maps from X into 1). Therefore 

in order to obtain X르jX in P ’I ’op all we need to show is that the order in jX is 
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discrete. This follows easily from the fact that if x양y in X there exists fEC(X, 1) 

such that f(x) =0, f(y)=1 and 1-f'εC(X， 1). 

THEOREM 5. IrOT=R:rOT. 

PROOF. Since Íor an arbitrary set S, [s C R S , we see that IrOT CRrO'I’. To 

show the converse we first prove that REIrOT and, in particular, 까 ==-] 0, 1 [. 

1 , r Define f:R • J 0, l[ by f(r)= 걷-十걷， .. π'\. lt is very easy to see that f is 

continuous, isotone, and injective. Moreovεr， the function g:] 0, 1 [• R given by 
2x -1 r 1 ~ /. ,/, 2x -1 r _ ~ ^ / ~~ / 1 

g(x) =τ=;;- for τz-￡x<l a11d g(x)=-걷호~ for o<x<τr is also contmums 

isotone and is the inverse of f. Having shown that 집즌] 0, 1 [, let XεR:rOT and X 
s _ ., """ ~ rS _ rS 

르YC R~. Then X는Y C R~==] 0, 1 ["C r and it follows that XElrOT. 

REMARK. We denote Irα’X’ by CrORR. It is clear that CrORR is the class of 

uniformizable (partially) ordered spaces as defined in [7]. From lemma 5 we see 

that CrO묘R C CrOR, but we have not been able so far to obtain whether these 

two categories are actually the same. 

THEOREM 6. CrORR is aη epireflectiνe subcategory of PTop. 

PROOF. Given XεPTop， the evaluation map p :X •강c，Xis clearIy continuous and 

isotone although it may not be injective. We call αlX the image of ρ. 1n order to 

show that α1 :PTop• CrORR is the desired epireflector, we first show that for 

every fiεC1X a unique j:αlX→R exists such that jop=f. If Pf is the f-projection 
c,X 7' we just set f= 한。i， where i is the inclusion of αlX in Rv,J<. f is clearIy continuous 

and isotone and j。ρ =f. Moreover, since p is surjective on αlX， 1 is uuique with 

respect to these properties. 

Consider now the more general case where f:X • Y is an arbitrary PTop-morp-
S hism such that Y드CrORR， and let h:Y• R" be an embedding. From the result 

just proved we find for every sES a unique continuous isotone map fs such that 

fsop=Psohof. From the Universal Property of the Product lt, there exists a 

unique continuous isotone map f such that for every sES, psof =자. 

X f. Y추_ RS, 

Pj 
g ‘x 

þ • • R 
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Having obtained Psofop=Psohof for all sES, we have f。ρ=hof， and accordingly. 

fαlX=f。ρX=hofX ζ 1m k. Let aECYIX and f [ G) = k(y). Since h 1S an eInhcddlI끼， 
y is unique and we can define a map J: αx-→Y by J(a)=y. Moreover, f(ρ(;;;)) 

=h(f(x)) and therefore J(p( ;c)) = f(x). We have obtained 1 which is clcarly 

continuous and isotone: 1。ρ=f and since ρ is surjcctive, 1 is unique' with 

these properties. This completes the proof. 

REMARK. We cou1d have given a paralle1 proof using the cvaluation j:X• I 1,X 

instead of . p. Suppose we had defined α2X=1-x. Sincε (p , αlX) and (j, α2X) 

wou1d then be solutions to the same Universal Problem reprcsented by the Reflex' 

ion Property we would have obtained αiX르α2X， 

3. Compaetification and Realcompactification. 

If XεCrORR; we denote by βlX the closure in [1,X of jX and by )..ilX the 
cx closure in R"" of X. Then X는J X and j X is a dense subspace of βlX， and, 

similarly, X르ρX and pX is a dense subspace of νlX， 

THEOREM 7. The categories of I-compact and R-compact spaces are eþz"reflectt"t'c 

in CrORR. The eþz"γ'eflectors are β1 and ν1 respectiνely. 

PROOF. We consider ν1 since the proof for β1 is similar and easier. By the same 

method as in Theorem 6 we obtain that for every flεC1X， there exists a unique 

1:νlX→R such that 1 op= f. The uniqueness is assured because p is dense in νl:. As 

in Theorem 6 we consider now the (corresponding) case where f:X• Y is a Cr(않표

morphism and YεRcOT. We introduce the embedding h:Y→~ with hY closed in 

~ and obtain an fs in RcOT such that ζ。P=Psohof， for every sES. The rest of 

the proof is even more similar to the proof of Theorem 6, and so is the proof of 

the statement concerning ß. 

THEOREM 8. IcOT=COTS C RcOT 

PROOF. It is obvious that IcOT C COTS. Let XECO’rs. Since we know that the 

evaluation mapj:X• [1.X is continuous and isotone, we start to show that it is 

injective. By [7] Theorem 4 p.48 we know that X is a normalIy ordered space. 

Let x,y be two distinct points of X , and without 10ss of generality, 1et x종y. 

Since the partial order on X is continuous, the sets Ly={εεXlz<y} and Mx= 
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{zεX I x<z} are disjoint. It is not difficult to show that OOth sets are closed. 
We conclude from [7] that a continuous isotone function fiεC1X exists such that 

1m fCI. f (Y )=O and f(x) =1. We call f￥ the function in I1X which has the 

same graph as f. and since j(씨(升) =f(x) = l :;i:O=f(Y) =j(Y)(f션• j(x) :;i:j(y). 

Considering that X is compact. II,X Hausdorff. and j continuous. we obtain 

that j is a closed map. All that remains to the proof is showing that if j(x)<' 

j (y). then x<:y. Suppose it were not so. i. e. say x '1:,y. As in our considerations 

to establish that j is injective. there exists an flεIIXsuch that j (y)(j)=f(Y) =0< 

l=f(x) =j(x) (f). a contradiction. 

We have shown that j is an embedding and jX is closed. Therefore XεIcOT . 

and IcOT=COTS. 

c,x By the same method we show that the evaluation p:X• R""A is an embedding 

c,x and X closed in R""A. Accordingly. COTS C RcOT. 

COROLLARY 2. Let Y be a space in PTop. Then Y is in CrORR if and onl)’ f 
Y is a subspace of some space X in COTS. 

S PROOF. If Y is in CrORR, YCr for some set S. Conversely, let YCX and 
xεCOTS. By Theorem8 X is in IcOT and therefore in IrOT. Since IrOT is 

heredi tary. YεIrOT=CrORR. 

COROLLARY 3. A space X in CrORR z.s 쩌 COTS ifand only zf βlX르X. 

PROOF. Let XεCOTS. By the Universal Property shown for β1 in Theorem 7, 
g 

there exists a unique map βlX→X such that goj = 1 x. and 1β，x is the unique 

map such that 1β，xoj=j. Since οiog)oj=jo(goj)=jolX=j， giving jog=lß,x ’ 

βlX즈X follows. The rest of the proof is now obvious. 

CORÒLLARY 4. All realcompact spaces (with discrete partial order) belong to 

RcOT. 

PROOF. Let X be realcompact with discrete order. Then CX coincides with 
cx C1X, ρ :X• R .... .A is a Top-embedding with pX =νX and one shows as in Theorem 

4 that the partial order in pX is discrete. Since X= 1.JX is a CrORR-isomorphism 

and νX= 1.J1X， we obtain XεRcOT. 
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4. Connections between ß and βl' 1) and νl' 

Lct F be the forgetful functor HOTS• H such that F(X, <J=X. If (X , 

,) εCOTS， XεC. and therefore βX르X. On the other hand. βi(X， <)르(X. <). 

:,howing that Fß1(X. <)=βX. Similarly, if (X. <)εRcOT Fν1(X， <)르X. It is 

natural to wonder whether these results canbe generalized for . all XεCrORR. 1n 
this section we generalize the resrilts for discretely orderedCrORR spaces and 
decide the problem in the negative by proving for well-ordered discrete spaces X 

with cardinality at least that of the continuous that β1 (X, <) is strictly smaller 

than βX. 

THEOREM 9. For eνeη (X. <) in CrORR, β1(X， d)는(ßX， d) and there exists 

a perfect, isotone. surjectiνe map ψ : (ßX， d)→β1(X， <). 

PROOF. Let {X. 딩ECrORR •. By Th∞'rem 4 (X. d)εCrORR. Since X is comple
tely regular, for every continuous, isotone f: (X, d) • (y, <) with (y, <)εCOTS， 

there exists a unique continuous. isotone map j such that if j x: (X, d) • (ßX, d) 

is the evaluation map. jojx=f. 

This shows that (ßX, d) and β1 (X, d) are both solutions to the same Universal 

Problem and therefore (ßX , 찌르β(X， d). 

Let h:(X.d)• (X , <) be defined by h(x)=x for all xεX. We show that βlh is 

a perfect, isotone, and surjective map. Since βl:CrORR→COTS is a fUDctor. βlh 

is aCOTS-morphism, and therefore perfect and isotone. Since jX<(X, <J=jX<。

hCX， d)=β1hojXd(X， d) C 1m β1 h, we obtain βl(X， <)=πix<(X， <) C r Im βlh= 

1m ßh. We set p for the composition of β샌 and the isomorphism (ßX. d) 즌β1 (X, d). 

COROLLARY 5. For every (X, <) 생 CrORR, vl(X， d)=(νX， d) and theγe exists 

a continuoμs， iSotoχemμi dense maþ q: (vX, d) • Vl(X , <). 

PROOF. As in the above Theorem we obtain νl(X， d)즈 (vX， d) and Px<(X, 중j 

ζ Im νlhC v1(X, <). 
REMARK. Our next Theorem will show, in particular, that there are spaces X 

in CrORR for which Fß(X. <)종ßX. 

THEOREM 10. Let (X, <) be a well ordered, discrete topological space. Then 

(X， <)εCrORR. M oreoνer， if the cardinality X of X is at least that of the conti-
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X (2X) === <2"" <2~w '=ßX. 

PROOF. Since the evaluation (X, <)-• 11,CX. <) is cIearly an embedding, (X, <)ε 

CrORR. To see that ß1 (X , <)<2호， we shall first show the existence of an injective 

N map m :I1(X, <)• (Xx/)"'. Let X 1 be the set of countable subsets of XX/, fiε[1 

(X, <) and Tf={aεXlf(씨 <I(a) for all μ <a}. We define t*=first {aεTflt<a} 

for eveη tεTf， and we note that since t <션 and t￥ETf' f( t) <1(t*). Since the 

set{]f(t),f(t*) [1 tεTf} of disjoint intervals of [must be countable, so is Tf' 

Therefore we candefine a map r:[l(X, <)-• X by r(f) = {(s，f(s))ε graphflsETf}' 

We shall show that r is an injective map. Suppose there exist g， fiε[l(X， <) such 

that g~f and r(g) =r(f). Let h be such that g(h)낯f(h). Without loss of gener

ality we may assume that f(h) <g(h). Since r(g)=r(f), we concIude Tf=Tg and 

k줄Tg· Let ν=first {μEXlg(μ)=g(h)}. Then v<h, vεTg and g(v)=g(h). We 

obtain (v, g(v))εr(g)=r(f) ζ graph f , and therefore g(v)=f(v). But thls leads to 

g(h) =g(v) =f(v) <J(h). which is a contradiction. 

Having shown that the map r:[l(X, <)• X 1 is injective, we define ψ :X1 

• (X× I)N where ψ(α) is a counting map of a. Since a=lm φ(α). if α낯g 
1m ψ(α)~Im φ(ß) and φ(a)~ψ여). The map m=φ。r is accordingly injective and 

m:[l(X. <)• (XXl)N. 

We conclude that [1 <(XX[)N=(호。c)~O=좋Ro=좋. and. since 에(X.<} 

can be embedded into 11,CX. <). and 늄숭한<c곳=청. we obtain 함호중)<2훗. 

On the other hand. we know from [9] that 꿇=2(2X). 
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