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EPIREFLECTIVE SUBCATEGORIES OF PARTIALLY ORDERED
TOPOLOGICAL SPACES

By Tae Ho Choe? and O.C, Garcia

Introduction and Notation: In this paper we consider the categories PTop and
HOTS of all partially ordered topological spaces, and all continuously partially
ordered Housdorff spaces, respectively, with the continuous, isotone functions as
their mcrphisms.

Let Tep be the category of topological spaces, H of Hausdorff spaces, Cr of
completely regular spaces and C of compact (and Hausdorff) spaces. For a full
subcategory K of Top, we denote by KPTop the full subcategory of PTop
consisting of all the objects whose underlying space belongs to K. Similarly we
denote by KOTS the full subcategory of HOTS consisting of all objects whose
underlying space belongs to K.

Firstly, we show that PTop is a complete, locally and colocally small category
and find some important epireflective subcategories of PTop. The subcategories
KOTS of HOTS which are epireflective are exactly those for which K is epirefle-
ctive in H.

Secondly, introducing the category of all completely regular ordered topological
spaces {7] and its subcategory CrORR, of all such spaces as defined in [7], we
- show that every object in CrORR can be characterized as a subspace of an object
in CO'TY, and that CrORR is epireflective in PTop.

Finally, we consider the sets I,X and C,X of all continuous, isotone functions

from X into the unit interval of the reals and into the reals, respectively. For
X&CrORR we define 8,X and v, X in the same way as the Stone-Cech com-
pactification and Realcompactificaton of X, respectively.

1. General Epireflexions.

Let £ be a set, (Y,),=; a family of objects of PTop, and f;:X—Y, a family
of functions which separates the points of X. Then X has an initial PTop
structure with respect to (f)),-,. Indeed, we consider the initial topology on X
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with respect to the family ( fz.)zE ; and define a partial order on X by a< b if
and only if f.(a)<f;(d) for all /&1, Clearly < y 15 a partial order, and one easily

sees that (X, <y) has the initial PTop structure with respect to (Siere

‘The proof for our next lemma follows directly from the above remark.

- LEMMA 1. If (X));=; is a fawily in PTop, there exists a product I, ;X &PTop

and if X&PTop and S is a subset of X, the inclusion £:S—X induces ¢ PTop-
subspace of X.

LEMMA 2. The category PTop is complete. Moreover, if K is a productive, closed
rereditary subcategory of Top, KPTop is complete.

PROOF. Considering [4], it is sufficient to show that PTeop has equalizers.
f

Given X——=Y in PTop, the subspace K of X induced on {#&X|f(x)=g(x)} by
g

its inclusion map 7: KX—X is a PTop-equalizer of f, £ as one can easily check.

LEMMA 3. Lef (X, Qi)a‘e ; be a family of PTop-spaces. On the underlying set Of
tke topological space 11, X,; we difine the following partial order: (x,7) <(3.7) if
and omly if x<;y and i=j. Then (uz-EfXg-, <) is the coproduct Hief(Xz-, <) i
PTop. |

PROOF. Let (si),‘,E ; be the family of natural injections, sj:X Fand 1 P X, and sj(x)
=(x, 7). we show that (Ha'EIXz" <) has the final PTop-structure with respect to
(8;);=- Let Z&PTop and g:(U;=rX

and isotone for each 7&l. Since ]]

., <)—Z bea map. Suppose gos; is continuous

;X ; has the final topology with respect to (s;) i1
g 1s continuous. Let (x, 7)<<(y, /) In (Hie X, <O.Theni=; and x<;y. Since g°5,;

is isotone, g(x, 2)=gos,(x) <gos;,(3)=g(y, D=g(, 7).

REMARK. Having had (4] a characterization of the epireflective subcategories
of a category K, whenever K is complete, locally small and colocally small, we

are interested in these last two properties for PTop.
LEMMA 4. The category PTop is locally and colocally small.

PROOF. It is sufficient to show that the monomorphisms in PTep are injective
(1:1) and the epimorphisms surjective (onto), because then given m:X—Y a

monomorphism, we can always induce an isomorphic copy of X on a subset of ¥

{and there is only a set of such spaces).' Similarly for epimorphisms.
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Let m:X—Y be a monomorphism, ¢, b in X and m(e)=m(b). We define g, k:
X—X by g(x)=a and k(x)=0 for all x&X. Since g and % are continuous isotone
maps, mog=smok, and m is a mcnomorphism, g=*h and therefore a=b.

Let e: X—Y be an epimorphism, and R the equivalence relation defined on Y11Y by:

R={((e(x), 1), (e(x),2))|z€X}U{((e(x),2), (e(x), D)1xE€X}Ulppyy
Define on (YIIY )/ R: (a,7)p<p(b,7)p if and only if (a,7)<(d,7), or there exists

ceX such that e<le(c) and e(c)<<b. Itiseasy to check that <, is a well defined
partial order and v,:¥YIY —(Y]IY )/R 13 continuous and isotone. If we denote by
g, and o0, the canonical injections ¥—Y]IY” we have:

vpooce(x)=(e(x), l)Rz(e(x),2)R:yR002ﬂe(x) for all x&X.
It follows that vpo0,ce=ppo0,ce, and, since ¢ is an epimorphism, o0, =vLo0,.
This means that for an arbitrary y&Y, we have (y,1),=(y, 2), and by the
definition of R, y&Im e.

REMARK. In accordance with Ward Jr. [10], we shall say that if (x, <)=PTonp,

the partial order < is semicontinuous if whenever a<{b in X there exist two open
neighbourhoods U of ¢ and V of & such that #<6 and e<v for all #<U and »&V.

We shall denote by POTS the class of PTop spaces whose partial order is semi-
continuous, and by KPQOTS the intersection of KPTop with POTS.

The partial order < shall be called continuous if whenever a<(b in X, there exist
two open neighbourhoods U of ¢ and V of & such that #<w for all ¥U and v&V.

Every space in POTS having continuous partial order is already Hausdorff [10].
We denote by HOTS the the class of POTS spaces whose partial order 1s-continuous.

THEOREM 1. The categories HPTop, HPOTS and HOTS are epz’reﬂecté’ve L1
PTenp. | |

PROCF. By Lemmas 2 and 4 it suffices to show [4] that these subcategories
of PTop are strongly closed with respect to products and equalizers.

From. the structure of the products in PTop given in Lemma 1, since H is closed
under products in Tep, so is HPTop under products in PTop. Given a family
(X) s in HPOTS (HOTS) it is not difficult to see that the partial order of

S

I _.X,&PTop is semicontinuous (continuous).

s&S

f »
Consider X ——Y in PTop with X&HPTop (or HPOTS, or HOTS). Since K=

{xeX|f(x) :g(:cg} CX and X is Hausdorff, K€HPTop. If X€HPOTS (or HOTS),
since the semicontinuity (continuity) of the partial order is obviously a hereditary



100 | Tae Ho Choe and O.C. Garcia
property, we conclude that AZEHPOTS (or HOTS), and the proof is complete.

THEOREM 2. If K is a subcategory of H, the following statements are
equivaleit : |

1) K is epirefiective in H

2) KPTop is epireflective in HPTop

3) KPOTS is epireflective in HPOTS

4) KOTS 7s epireflective 1nm HOTS.

PROOF. Let K be epireflective in H. Since K is productive and closed hereditary
KPTop is complete. One shows as in Theorem 1 that KPTep is strongly closed
with respect to products and egualizers in PTop. Therefore KPTop is epireflective
in PTop and consequently in HPTop also. Since we know from Theorem 1 that
HPOTS is epiréﬂective in PTop, the intersection KPOTS of KPTop and HPOTS
is epireflective in HPTop and so also in BPOTS. Similarly, if KPTop is epirefiec-
tive in HPTop, one concludes that XOTS 15 epireflective in HOTS. |

Suppose KPOTS is epireflective in BPOTS. Let (X)), be a family in K. By
considering UX,=(X,, d) where d is the discrete partial order, since KPOTS is
productive, II,-;UX,& KPOTS. Since I[,_;UX has II,-;X; as its underlying topo-
logical space, II,-, X, €K. Let Xf?Y be given in H with X&K, we consider £ the

f
equalizer of (X, d)——(¥, d) in HPOTS, where (X, d) €KPOTS. Since £ inherits

g : . L.
the discrete order, its un}ierlying topological space together with the inclusion into

X is an equalizer of X—2Y in K. By [4], K is epireflective in H. Similarly, 4)
P |
implies 1).
2. Complete regularization.

DEFINITION 1. Let E&PTop. We call a space X&EPTop E-regular if there

exists a set S and a PTop-embedding ¢:X—E°., We call an E-regular space E-

compact if eX i1s closed in E°. We denote by ErOT and EeQOT the classes of E-
regular and E-compact spaces of PTop, respectively..

The following definition is due to Nachbin.

DEFINITION 2. For X&PTop, X is called a completely regular ordered spuce if:
1) if e&X and if V designates a neighbourhood of ¢, there exist two continuous
realvalued functions f and g on X, where f is increasing (isotone) and g

decreasing such that
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0<f, 0<{g«l
fla)=1, gla)=1
inf [f(x), glx)]=01if x&X\V
2) if a,b&=X and “a<bd” is false, there exists a continuous increasing, realvalued
function f on X such that f(a)> f(b). |
We denote by CrOR the category of completely regular ordered spaces as given
in the above definition.

LEMMA 5. IrOTCCrORCCrOTS

PROOF. Let X&EIrQT, and S be a set such that X is a subspace of [ >, By
[7], Theorem 7 p.55, we have X&CrOR. If X&CrOR it follows by (7] Prop. 8

p.59 and [10] Lemma 1 p.145, that X has a continuous partial order, and by
[71 Prop. 6 p.53, that the underlying topological space of X is completely regular.

THEOREM 3. Let X be an space in PTop. X is I-regular if and only if the
evaluation map j:X—I X given by 7(x)(f)=f(x) is an embedding.

PROOF. Let X be I-regular. Let e:X—I° be an embedding and x7#y two
elements of X. Since ¢ is an embedding, e(x)7#e(y) and poe(x)7#p.ce(y) for some
<S. Since poecI X we obtain j(x)(p0e) #7(9)(p.ce) and j(x)7#7(y). Therefore s

is an injective map. To see that j is a continuous and isotone map, we remark that I' X
has the product structure and for every f&I,X the f-projection of 7 1s f, a continuous
and isotone map. Suppose now that j(x) <j(y). Then for every s&S, e(x)(s)=

(p00) (x) =7 (x) (p,0e) <j () (pce) =e(y)(s), and we obtain e(x) <e(y). Sincee is an
embedding, x<y.

To complete the proof that 7 is an embedding it is not difficult to show that ;s
1S open In its image.

COROLLARY 1. LZLet X be a space in PTop, X is R-regular if and ownly if the
evaeluation map 0: X —RYX given by p(x)(f)=f(x) is an embeddz'ng._

PROOF. As Theorem 3.

THEOREM 4. Every completely regular topological space (with the discrete order)
is I-regular.

PROOF. Let X be a completely regular space. As is well known, the evaluation
7 X—I ¢ D s a Top-embedding, and since the order in X is assumed to be
discrete, . X=C(X, I) (the set of all continuous maps from X imto f). Therefore
In order to obtain X=7X in PTop all we need to show is that the order in jX is
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discrete. This follows easily from the fact that if x7¢y in X there exists f&EC(X, I)
such that f(x)=0, f(y)=1 and 1—-;&C(X, I).

THEOREM 5. [rOT=Rr(Q7T.

PRCOF, Since for an arbitrary set S, { > CRS, we see that IrOT CRrOT. To
show the converse we first prove that RE€Ir0OT and, in particular, #==]0,11.

: . 1 ¥ - _ :

Define f:R—]0,1[ by f(r)= 5 - TR [t is very easy to see that f is

continuous, isotone, and injective. Moreover, the function g:]0,1{—k given by
2x—1 e 1 . 2x—1 ) 1 . | .

glx)= 55y 10T —2—<x<1 and g(x)= o for 0<x< 5 18 also continuous

isotone and is the inverse of f. Having shown that £==]0,1], let X&RrOT and X
=y C R°. Then X=Y CR’=]0, 1[°CI° and it follows that X&IrOT.

REMARK. We denote Ir0T by CrORR. It is clear that C_rORR is the class of

uniformizable (partially) ordered spaces as defined in [7]. From lemma 5 we see
that CrOEBR C CrOR, but we have not been able so far to obtain whether these

two categories are actually the same.

THEOREM 6. CrORR is an epireflective subcategory of PTop.

PROOF. Given X&PTop, the evaluation map o : X N ST clearly continuous and
isotcne although it may not be injective. We call «,X the image of o. In order to
show that a;:PTop—CrUORR is the desired epireflector, we first show that for
every fEClX a unique f ;o; X—R exists such that Foo=f, If b; is the f-projection
we just set f= pfnz', where ¢ 1s the inclusion of a; X in RC‘X. f is clearly continuous

ry

and isotone and fop=/f. Moreover, since o is surjective on o, X, j 1s unique with

respect to these properties.

Consider now the more general case where f: X—Y is an arbitrary PTop-morp-

hism such that YECrORR, and let #:¥—R° be an embedding. From the result
just proved we find for every s&S a unique continuous isotone map fg such that

fsop=pohof. From the Universal Property of the Product RrR® , there exists a

anique continuous isotone map f such that for every s€S, peof =f.
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Having obtained peo f op=p.ohof tor all sS&S, we have Jfop=hof, and according!ly.

me:foszizofX Clm 4 Let e€a X and f(a)=h(y). Since & is an embeddine,
y is unigue and we can define a map f:aX—Y by f(a)=y. Moreover, j(u(x))
=h(J(x)) and therefore f(o(x))=f(x). We have obtained f which is clearly
continuous and isotone; fopo=f and since o is surjective, F is unique with

these properties. This completes the proof.

REMARK. We could have given a parallel proof using the evaluation 7:X —hd
instead of p. Suppose we had defined a,X=7X. Since (p, ¢, X) and (7, a,X)

would then be solutions to the same Universal Problem represented by the Refiex-
ion Property we would have obtained o, X=a,X.

3. Compactification and Realcompactification.

[f XeCrORR, we denote by §;& the closure in [ L& of 7jX and by wX the
closure in R*% of X. Then X =~sX and jX 1s a dense subspace of A:.X, and,

similarly, X=pX and X is a dense subspace of v, X.

THEOREM 7. The categories of I-compact and R-compact spaces are epireflective
in CrORR. The epireflectors are 5y, and v, respectively.

PROOF. We consider v, since the proof for 8, is similar and easier. By the same
method as in Theorem 6 we obtain that for every f&C,X, there exists a unique
f:v;X—R such that fop=f. The uniqueness is assured because p is dense in v,X. As
in Theorem 6 we consider now the (corresponding) case where f: X—Y isa CrORZ-

morphism and Y&ERe0T. We introduce the embedding h:Y—R> with Y closed in
R’ and obtain an fs in ReOT such that fop=ppohof, for every s&S. The rest of

the proof is even more similar to the proof of Theorem 6, and so is the proof of
the statement concerning pS.

THEOREM 8. IcOT=COTS C ReGT

PROOF. It is obvious that IeOT C COTS. Let X&COTS. Since we know that the

evaluation map f : X—I"% is continuous and 1sotone, we start to show that it is
injective. By [7] Theorem 4 p.48 we know that X is a normally ordered space.

Let x,y be two distinct points of X, and without loss of generality, let x<y.
Since the partial order on X is continuous, the sets Ly={z&X|z<y}and Mzx=



104 Tae Ho Choe and O.C.Garcia

{z&X |x<z} are disjoint. It is not difficult to show that both sets are closed.
We conclude from [7] that a continuous isotone function feC X exists such that

Im fCI, f(y)=0 and f(x)=1. We call f* the function in I;X which has the
same graph as f, and since j(x) () =f(x) =1#0=r) =70 (*), 7(x)#7(¥).
Considering that X is compact, [ hd Hausdorff, and 7 continuous, we obtain

that 7 is a closed map. All that remains to the proof is showing that if ;j(x)<C
7(9), then x<y. Suppose it were not so, i.e. say x<y. As in our considerations

to establish that 7 is injective, there exists an f&/1,.X such that j(»)(f)=f(y)=0<
1=f(x)=7(x)(f), a contradiction.
We have shown that ;7 is an embedding and jX is closed. Therefore X&IeOT

and IeOT=COTS.
By the same method we show that the evaluation p:X—rRC‘X 1s an embedding

and X closed in R®%. Accordingly, COTS C ReOT.

COROLLARY 2. Let Y be a space in PTop. Then Y is in CrORR if and only if
Y its a subspace of some space X in COTS.

PROOF. If Y is in CrORR, YCI® for some set S. Conversely, let ¥YCX and
XeCOTS. By Theorem 8 X is in IeOT and therefore in IrOT. Since IrOT is

hereditary, YE€IrOT=CrORR.

COROLLARY 3. A space X in CrORR s iz COTS if and only if [ X=X,

PROOF. Let X&COTS. By the Universal Property shown for 8; in Theorem 7%,

there exists a unique map §;X %X such that goj=1 x and lg 5 is the unique
map such that 151x°f=f- Since (Jogloj=jo(gej)=joly=7, giving jog:—-lﬁlx,

B, X=X follows. The rest of the proof is now obvious.

COROLLARY 4. All realcompact spaces (with discrete parital order) belong to

ReO7T.

PROOF. Let X be realcompact with discrete order. Then CX coincides with

C, X, 0:X SR is a Top-embedding with pX =vX and one shows as in Theorem
4 that the partial order in pX is discrete. Since X=pX is a CrORR-isomorphism

and v X=v,X, we obtain X&RcOT.
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4. Connections between 8 and 8,, v and yu,.

Let £ be the forgetful functor HOTS—H such that F(X,<)=X. If (X,
<) €COTS, X&C, and therefore SX=X. On the other hand, 8;(X, O=(X, <),

showing that FB,(X, <)=pX. Similarly, if (X,<)&ERe0T Fy,(X,)=X. It is

natural to wonder whether these results can be generalized for -all X&CrORE. In
this section we generalize the results for discretely ordered CrORR spaces and
decide the problem in the negative by proving for well-ordered discrete spaces X
with cardinality at least that of the continuous that 8{(X, <) is strictly smaller

than AX.

THEOREM 9. For every (X, <) in CrORR, B,(X,d)=(BX,d) and there exists
a perfect, isotone, surjective map p:(BX,d)—p,(X, <).

PROOF. Let (X, <)&CrORR. By Theorem 4 (X, d)&CrORR. Since X is comple-
tely regular, for every continuous, isotone f:(X,d)— (¥, <) with (¥, <)&lCOTSs,
there exists a unique continuous, isotone map f such that if J X:(X, d)—(8X,d)

is the evaluation map, foj,=f.

This shows that (8X,d) and 5,(X,d) are both solutions to the same Universal
Problem and therefore (8X,d)=8(X, d).

Let 2:(X,d)—(X, <) be defined by h(x)=x for all x&X. We show that Bk is
a perfect, isotone, and surjective map. Since ,Bl:CrORR—arCOTS is a functor, 8%
is a COTS-morphism, and therefore perfect and isotone. Since ;7 :{<<X= L =7y°
WX, d)=phojy,(X,d) CIm Bk, we obtain §,(4X, Q=7 (X, ) CI Im Gih=
Im Bh. We set p for the composition of 8;# and the isomorphism (BX, d)=p,(X, d).

COROLLARY 5. For every (X, <) in CrORR, v,(X,d)=WX,d) and there exists

a continuous, isotone and dense map q: (WX, d)—v,(X, <.

PROOF. As in the above Theorem we obtain y;(X,d)=X,d) and oy (X, <)
Chn Uth Ul(X, {2).

REMARK. Our next Theorem will show, in particular, that there are spaces X
in CrORR for which FB(X, <)#pLX.

THEOREM 10. Let (X, <) be a well ordered, discrete topological space. Then
(X, <)SCrORR. Moreover, if the cardinality X of X is at least that of the conti-
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——

nuous, we have: B;(X, <)<2” <2 '=pgX.

PROOF. Since the evaluation (X, )—-I"™*<) is clearly an embedding, (X, )&
CrORR. To see that 5,(X, <)<2%, we shall first show the existence of an injective

map m:I,(X, g)—-*(XxI)N. Let X, be the set of countable subsets of XXI, f&EI,
(X, <) and Tf={aEX | f(#) <f(a) for all u<a}., We define (*=first {aETf|t<a}*
for every tETf, and we note that since ?<t*and t*&T, f(¢) <f(¢¥). Since the
set {1f(), fA*) [I1tE€T s} of disjoint intervals of I must be countable, so is T

Therefore we can define a map 7:I,(X, <)—X by r(f)={(s, f(s))E graph f |S€Tf}.
We shall show that 7 is an injective map. Suppose there exist g,fEI,(X, <) such

that g#f and 7(g)=7(f). Let & be such that g(h)#f(k). Without loss of gener-

kETg. Let v=first {ucX]g(u)=g(h)}. Then v<h, vETg and g(v)=g(). We

obtain (v, g(v))Er(g)=7(f) Cgraph f, and therefore g(v)=f(v). But this leads to
g(B)=g)=f(w)<f(h), which is a contradiction.
Having shown that the map 7:[{(X,<)—X; is injective, we define ¢:X,

—(XXD" where o(a) is a counting map of @. Since a=Im @(a), if a#B
Im ¢p(a)#Im ¢(B) and ¢(a)#9p(B). The map m=eoy is accordingly injective and:

m:1,(X, <)—(XxD".

P—
T —

We conclude that I;(X, O<(XXDV¥=(Xoc)™=X"=X, and, since B,(X,<)-

can be embedded into I"'**<), and I I‘(X'.6<c?=2?, we obtain 8;(X, <) <2,

— X
On the other hand, we know from [9] that X —2(2%),

McMaster University
Hamilton, Ontario.
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