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ON THE K-PROXIMITIES

By Chi Young Kim, Kil Nam Choi and Yong Sun Shin

The theory of proximity spaces was essentially discovered in the early 1950’s
by Efremovi¢ when he axiomatically characterized the proximity relation “4 is
near B”, which is denoted by A & B, for subsets A and B of a set X.

Efremovi¢’s axioms of proximity relation J are as follows: '

Pi1. A0 B implies BJ A
P2. (AUB)JC if and only if Ao C or BoC

P3. AJ B implies A# ¢, B# ¢
P4, A4 B implies there exists a subset £ such that AdE and (X—E)J B

P5. ANB # ¢ implies A J B. |
A binary relation ¢ satisfing axioms P1-P5 on the power set of X is called the
E-proximity (Efremovi¢’s proximity) on X. Defining the closure of a subset 4 of
a proximity space (X, ¢) to be the set {x&X|[x0A}, Efremovic showed that a

topology 7 (0) can be Introduced in X and that this immduced topology is corpl-
etely regular. He also showed that every completely regular space (X, 5 )

admits a compatible proximity J on X such that 7 (J)=

In this work we propose some generalization of the concept of the Efremovi¢’s
proximity, which we call a “K-proximity” and examine some of its properties.
We also try to characterize the topological structure based on this K-proximity.

K-proximity and E-proximity.

DEFINITION 1. Let & be a binary relation between X and #(X) such that
i) xd AUB iff xd Aor xJ B
ii) xd¢ forall x€ X
iii) x € A implies 20 A
iv) xJ A implies there is a subset E such that *dE and y3 A4 for ally €X-E.
The binary relation 0CXXF(X) is called the K-proximity on X iff ¢ satisfies
the axioms i)—iv). The pair (X, 0) is called the K-proximity space.

One can easily show that the E-proximity on X implies the K-proximity on X.

THEOREM 1. Every E-proximity on X is also an K-proximity on X.
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PROOF. P1 and P2 implies i), P3 implies ii), and P5 implies iii). If A= {x}
and AJ B then from P4 there exists a subset £EC X with x¢ E and X—E § B.
Hence for each y&€X —FE we have y¢J B. This means that P1 and P4 imply iv).

We now give an example of an K-proximity which is not an E-proximity.
Let S={0, 1} be the Sierpinski space with the topology .7 ={¢@, {0}, S} then by
the following theorem 2 there is a K-proximity ¢ on S with .7 (§) =.9 . But
since S is not completely regular, S can not admits an E-proximity.

Now we shall introduce the Efremovi¢ proximity ¢, frcm the K-proximity 0

replacing the akiom iv) in K-proximity by the stronger one.

DEFINITION 2. A binary relation ¢ defined between X and £(X) is called the
E-proxiinily on X iff 0 satisfies the axioms i), ii), iii) in the definition 1, and

iv’) For each subset £EC X there is a point x &€ X such that either xJ A,
x0FE orxoB, x0X-E, then we have x0 A and x0 B.

DEFINITION 3. In a K-proximity space (X,0) let J; be a binary relation on

Z (X) defined as follows: |
For each subsets 4, B of X, A 5‘1 B iff thereis a point x& X such that xJ A, xJ B.

THEOREM 2. The binary relation :)‘1 on F(X) defined in definition 3 is the
Efremovic proxinity on X.

PROOF. 1) It is clear that A9J; B implies B, A.

2) (AUB) 0, C < there is a point z such that x§ AUB and xJC
(oA or x0B) and x0C
< (xdA, x0C)or (3B, 200
& Ad;C or Bd,C.

3) AJ; B> there is a point x such that ¥ 4, xJ B

> A# ¢ and B # ¢.

4) Suppose that for each subset E C X, AJE or Bd,X-E. Hence for some
point x € X we have either x0 A, x0E or x¢ B, x0 X-E, therfore by iv’) x5 A4
and xJ B, that is, AJ, B.

5) A(B#¢ > AvE X with x€ANBxEA4 and x€B> x50 Aand x0 B AJ, B.

In what follows we introduce some properties of the K-proximity.
LEMMA 1. If x0 A and AC B then x 0 B.
PROOF. By i) x0 A= xd AUB> xJ B.
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THEOREM 3. In the K-proxiuity space (X, 0) if A% is defined to be @ sef
{x|x 0 A, x&X} for each subset AC X, then J is a Kuratowsks’s closure operator.
Hence we can introduce the topology I (0) on X by 7 and for each swbset A C X

A=A,
where A is the closure of A with respect to T (J).
PROOF. Now we show that ¢ is a closure operator.
1) For cach x€ X, xJd¢@d. Hence x%cba, that is QSJ = @,

2) If x& A then x04 or x € A°, Therefore A C 4A°,
3) Let x9 A then by iv) there exists a set £ C X such that xdE and yd A
for all y€ X-E. If zEAcT, then 20 A. Hence z S E, that is A°CE. Since » g E

we have x4 A§. This means that z & A55 implies x & A° or AﬁJCAa. Therefore
i) 7
A =A4A.
0) 2€(4AUB)’ & x0(AUB) & 20 Aorz0 B s A orre B & xe A°UB°
That is, (AUB)5=A5UB'5.

THEOREM 4. Let (X, 7) be a topological space. If a binary relation ¢ C XX
F(X) is defined by x0 A iff x € A, then §isa K-proximily on X and the topology
T (0) induced by J is the given topology 7 .

PROOF. 1) ¢=¢ > x4 ¢ for all x € X.

2) x0(AUB) & x €AUB=AUB & x€A or x&€B<& 27 A or x 0 B.

D xEeADx€AD xJ A

4) x§A>D xEA D xE(A) D 2 A.

Now let A=F then x/E and yfA for all yeX-E=X-A. Since 2EA & x5 4
@xEAa, we have z:Aﬁ. that 1s .7 (0)=7".

THEOREM 5. The topological space X is Ty iff there is K-proximity 0 on X
satisyisng the following condilion:

v) xd{y} 2 x=y.
PROOF. X is T,. = There is a binary relation ¢ on X satisfing conditions i)-

iv). Then x€A5<:> x0A. Hence x0 {3} = x& {y}a——- {»} since X is T;- That 1s x=
y. Conversely if x0'{y} implies that x=y, then { y}az {y}, that is, X is T,

LEMMA 2. x3{y}, 04> x7A.

PROOF. x2dA = There is a subset ECX such that x20E, z9A4 for all zeX—-EF >
y&EE (if y&F then x0{y}, yEE so we have z0F) D y&X—FE, that is ygA. It is
a contradiction,
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It is easy to show that the following theorem is true in the K-proximity space

(x, 0).

THEOREM 6. 1) A subset G of X is opern iff x§(X-G) for every x in G.
2) If x3 A, then x&Int (X-A).

DEFINITION 4. Let J,, J, be K-proximities on X. We define
' 5, <0y iff 20,42 50, A
The above is expressed by saying that d, is finer than &, or J, is coarser
than 0,.

The following theorem shows that a finer K-proximity structure induces a
finer topology.

THEOREM 7. Let 0, 0, be two K-proximities defined on a set X. Then we have:
1) 0,<0, implies T (0,) CIT (0.
2) Let F; and %, be two lopologies on X, and 0, and 0, bé the K-proximities

on X defined as in the theorem 4 with respect to Iy and 7, respectively. Then
Iy C % implies 01<0,

PROCF. 1) GES (J,) = x2€G implies that x7,(X-G)
| = &G implies that x7,(X-G)
> GES (0,).

2) 25,4 2€A" > x€A” since I C F5 implies ACA” = 6, A.

Alternate deseription of K-proximity.

Given a proximity space (X, ¢), a subset B may said to be a proximity
neighborhood of A iff A¢(X-B). An analogous concept, that of a K-proximity
neighbourhood, can be introduced in a K-proximity space and furnishes an
alternative approach to the study of K-proximity spaces.

DEFINITION 5. A subset A of a K-proximity space (X, J) is a 5—nez'gkboufhaod
of a point x in X (in symbols x<A4) iff xg(X-4).

[LEMMA 2. Let (X, 0) be a K-proximity space and let IntA denoie the interior

of A. Then x<A z'mp!z'eé rLIntA. Therefore x & IntA, showing that a o0-neighbo-
urhood is a topological neighbourhood.

PROOF. £<€A > 2f(X —A) = x5(X - A’ =X —IntA > x<IntA.
LEMMA. 3. If x 0 A then there is a subset B of X such that x<B and y§ A for
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every y in B.

PROOF. If 2dA then by axiom iv) there is a subset E of X such that xfE and
9yFA for every y in X—E. Let X—E=B then x<B and yjA for every y in B.

THEOREM 8. Giver a K-proximity space (X, 0J), the relation < satisfies the
Jollowing properties:

1) x<X for every x in X.
- 2) x<A implies xEA.

3) If x LA and ACTB then x<B.

4) x<A tmplies there is a subset B of X such that x<&B and y<A for every ¥
n B.

5) if #<A; for i=1, 2, -, n then x<_61A£.

6) If 0 is Ty, then x<(X—{3}) iff % %y

PROOF. 1) Since x3¢, x<X.
2) is clear.
3) xLA, ACB xf(X~A4), X—BCX—-A4> x5(X—B) > x2<B.
1) xKLAD x9(X—A) = By lemma 3 there is a B such that x<B and y<A4
for every ¥ in B.

5) $9(X—A4) for i=1,2, -, # > U (X—4) > 55X~ ) 4)
= x<z‘élAi'
6) (X —1{y}) 27 {y} & x5y,

THEOREM 9. If < is binary relation between X and FP(X) satisfying the
properties 1)—5) in the theorem 8 and 0 is defined by

2P A iff x<(X—A4),
then 0 is a K-proximily on X. A is a 0-neighbourhood of x iff x<A.

PROOF. 1) 274, 2B 2K (X ~A4), 2<(X—-B) S r»<l(X-ANX-B)&

z3(AUB).

ii) x€X 2 x<X 5 xg9.

ifi) 204> x<(X—A) D xe€(X—-A4) D xEA.

iv) If 29 A then *<(X—A). By 4) there is a B such that x<B and y<(X—
A) for every y in B. Hence let E=X~—B then xgE and y3A for every y In
B. That is, there is a subset £ of X such that zJFE and y4A for every y in.
X-F.
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It is easily seen that if < satisfies the additional property 6) in the theorem 8:
then 0 is T.

K-proximity mappings and subspaces.

In the study of general topological spaces, continuous functions play an
important role. A similar role is played by proximity mappings in proximity
spaces. Thelr analogue in the theory of K-proximity spaces can be introduced
as follows.

DEFINITION 6. Let (X, ¢,) and Y, J0,) be two K-proximity spaces. A function
f X—Y 1is said to be a K-proximity mapping iff x0,A implies f(x)J, f(A)

THEOREM 10. Let (X, d,) and (Y, 0J5) be two K-proximity spaces and let f: X
—Y be a function. The following properities of f are equivalent:
1) f s a K-proximity mapping.

2) y9,B implies xg, F-YUB) for each x&f1(p).

3) y<,B implies x<, f~1(B) for each z€f~1(y).

PROOF. 1) = 2). Suppose that there is some fo_l( 9) such that x c)‘if_l(B)..
Then f(x)d,f(f (B)) and f(f '(B))CB. Hence y d,B.

2) >3). If y<.' B then 34,(Y —B). By 2) we have 2§, (¥ —B) for every
x€f7'(»). That is, zf(X—f '(B)) for every z&f '(3) or 2<, f (B) for
every fo_l(y).

3) 2. If f(x)d,f(A) then f(x)< (Y —f(4)). By 3) we have x’<1f—1(Y—
f(A)) for every x’Ef_‘l(f(x)). Since fo_l(f(x)), x<1(X—f_1(f(A)) and
therefore x4, f_l( f(A)) or xé‘lA.

It is easy to see that the composition of two K-proximity mappings is a K-
proximity mapping. The following theorem is similar to the well-known result:a
proximity mapping is continuous with respect to.the induced topologies.

THEOREM 11. A mapping f: (X, 0 1_)-—*(1’, 0,) is continuous with respect to
T (0,) and T (0, iff f is a K~proximity mapping.

PROCF. If f is continuous and xJ;4 then x& A. By the continuity of f we
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have f(x)&Ef(A), or f (x)J, f(A). That is, f is a K-proximity mapping.
If fis a K-proximity mapping and +EA then x5, 4 and also f(x) J,f(4). That
is, f(x)&f(A) or f is continuous.

THEOREM 12. Given a function f:X—(Y,0 1)» the binary relation 0 defined by
x 9 A iff f(x)dy f(A), is the coarsest K-proximity on X such that f is a K-proximity
mapping.

PROOF. We first show that ¢ is a K-proximity on X.

1) 20(4AUB) < f(x)d; fLAUB)=Ff(AUS(B) & f(x)9, f(A) or f(x)d,f(B)
& x0A or xJB.

1) 2€X D f(NEY 2 f(x)9,9 2 f(x)d, F(d) D x50,

i) x€A4 2 f(x)&f(A) 2 f(x)d; f(A) = xJA.

iv) 20A > f(x)d, F(A) > there is a subset E, such that J(x)d,E, and yd, f(A)
for every y in Y —E, 5 Let E-—-f_l(El) then we have f(E)CEl, (g f (&)
and yg, f(A) for every y in ¥ —EPDNS(X) D 2dE and x'g A for every z" in

@ =EPN fHAXN=X—F (ED)NX=X~E.
Let J, be any K-proximity on X such that f:(X, dp—(¥,d,) is a K-
proximity mapping, then xd,4 implies f(x)J'f(A) or xdA. That is, J<J.

DEFINITION 7. Two K-proximity spaces (X, ;) and (¥, J,) are said to be
K-proximally isomorphic iff there exists a one-to-one mapping f from X onto I

such that both f and f_1 are K_—pru:nv;imallyr mappings. Such a mapping f is called
a K-proximitly isomorphism.

It follows from the Theorem 11 that two K-proximity spaces are K-proximally
isomorphic iff they are homeomorphic.

DEFINITION 8. Let (X, J) be a K-proximity space, and YCX. The induce_d’
K-proximity 0y on ¥ is the coarsest K-proximity such that the inclusion mapping

{1 Y—>X is a K-proximity mapping. The K-proximity space (¥, Jy) is called
the subspace of (X, 0) and J'y 1s called the induced K-proximzly.

Product spaces and quotient spaces.

We next consider the product of a family {(Xa«, J): aEl} of K-proximity
spaces. Let X=II{X :a&l} denote the Cartesian product of these spaces. We:
define a product K-proximity ¢=II{0, : «& I} on X as follows:
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DEFINITION 9. Let s&X and A a subset of X. Define x0'4 iff for each finite
cover z={4,, A, *+, A} of A there is A; such that P (x)J,P,(A;) for each
acl. Where P, denotes the projection of X onto X ..

THEOREM 13. The binary relation O defined in the definition 9 is a K-proximaity
on the product set X.

PROOF. i) Let A and B be subsets of X. If 204 and o¢x= {E,, E,, -, E,} 1s a
finite cover of AUB then ¢r is also a a cover of 4 and there is some E, in ¢
such that P, (x)d, P, (E.) for each a€l. That is, 20(AUB).

Suppose that xdA and x§B, then there is some finite covers z=1{4,, Ay -,
A} of Aand £=1{B,, B, -, B} of B such that for each 4;E0cr there is ;€
I with P (x) 4, P, (A) and for each B.€L there is a;&€1 with Paj(:c)é' P

x; o

(B). aUL={A4;, Ay -5 A,, By, B, -, B} is a cover of AUB and therE:
is no member A, or BJ. in zUA£ such that P, (x) ¢, P, (A)for each a&l or
P (x) 5‘0,25’“(3;.) for each ¢€/. Hence we have xd(AUB).

ii) Since cz={¢} is a finite cover of ¢ and P (x) 4 P, (¢) for each a€l we
have x49. | ' |

iii) If €A and 4=4,UA4,U--UA4, then there is some A, such that xS A,

Hence for each a&l we have P, (x) 7, P, (A4,), that is, x0A.

iv) If x§A then there is some finite cover oz={4,, 4,, -, 4,} of A such that
for each A4, in ¢, P, (%) §,P,(A4,) for some o, EIL.
Since (X, J,) is a K-proximity space for i=1, 2, -, #, there is E,.CX

such that P_(x) §_E, and y, ;é' w Poi(4;) for each y€X —E,. Let E=P_ l(El)
U--UPJ(E,) then zJE since {P, (E)} is a cover of E and for each i, P, ()
y) um(P;l(Ez-)). On the other hand yjA for each y in X~E. For if y€X—E

then y%P;.l(Ez.) for each z or P_(9)&E,, hence Pa,"(y)EX . —E; for each ¢ and
P, () 9,P,(A) for each i.

DEFINITION 10. Let {(X,, 0 )|a€l} be a family of K-proximity spaces (X,

J,). The pair (X, 0), where X=I1X,, 0=, is called the product K-proximity
space of the family.

THEOREM 14. A mapping f from a K-proximity space (Y, J;) to a product K-
proximity space X=IIX  is a K-proximity mapping iff the composition P of:Y
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—X , Is a K-proximity mapping for each projection P,.

PROOF. We need only prove that if each P of is a K-proximity mapping then
so is f. Let y€Y and BCY. And suppose that yo,B and f(y) #f(B) then there
is some cover &= {4, -, A} of f(B) such that for each A.€c, P, ( F(3))d,,

P, (A, for some a,&1. Since { f_l(Al), f_I(Aﬂ)} is a cover of B and

¥J, B, we have yJ, f—l(Aj) for some A j Hence P of(y) J,P, of( f"l(Aj)) for each
a&l since P, of is a K-proximity mapping. That is, P, (f(y))J a,Pa(AJ.) for each
a&l. This 1s contradict with the fact Paj(f(y)) ﬁaij(Aj). Therefore f(y)of(B),
that is, f is a K-proximity mapping.

COROLLARY. The product K-proximity 0=IId, is the coarsest K-proximity on
X=11X A for which each projection P, ts a K-proximity mapping.

We now turn our attention to the category of all K-proximity spaces. We first
consider a category ¢z whose class of objects is the class of all K-proximity

spaces and for each (¥, Z) e Xor whose Hom (Y, Z) is the set of all X-prox-
imity mappings of ¥ into Z and also consider the product K-proximity space X=

[I{X la€l} of a family {(X,, J,)la€l} of K-proximity spaces. Let Z¥ be the
set of all K-proximity mappings from Y into Z, where Y and Z are K-proximity
spaces, and let (X)Y be the cartesian product H{Xﬁlael } then we have a cate-

‘gory £ of sets whose class of objects is the class £= {(X)YIYEOZ} and whose
Hom ((X)Y, (X)Z) is the set of all functions from (X)Y into (X)Z. Now let T :
ct— AL he a contravariant functor such that for each Y &c, T(Y)-—-(X)Y and for
each g& Hom (¥, Z2) in o, T(g) : (X)ZH(X)Y with 7'( g)((fa))z( gof,) where

(J, a)E(X)Z=H{X§IaEI }, then T is really a contravariant functor.
Combining the above discussion and the theorem 14 we obtain the following

result:

THEOREM 15. The contravariant functor T . z—« has a universal element ((p,),
X), where P, . X—X_ is the projection from the product space X=Il{X |aE€I}

to X, and (pa,)E(X)X.
In the following we shall introduce the concept of quotient K-proximity.

THEOREM 16. Let (X, 0) be a K-proximity space and let [ . X—Y be a mapping,
where Y is any set. If we define yd‘lB iff each f-saturated closed subset of X
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contaiming f_l(B) contains f_l(y), then 0, is a K-proximity on ¥ aend f is a K-

proximity mapping. (or 0, 1S the finest K-proximity on Y such thet f is a K-
proximily mapping. )

PROOF. We first show that ¢, is a K-proximity on Y.
1) Suppose that y0; (AUB) and yg,B then each f-saturated closed set F' contai-

ning f"'l(AUB) contains f_l( y)r and there 1s f-saturated closed set G contalning

f_l(B) such that G f—l( y)=¢@. Consequently each f-saturated closed set H
containing f_l(A) contains f_l( v), since if H ﬂf_l(y)=¢5 then the closed satur-

ated HUG containing f_l(A) Uful(B) does not contain f"l( ) and it is a contr-
adiction. Hence yd;A. Suppose that y0;4 then each f-saturated closed set F
containing f—l(A) contains f _1( ¥). Hence each f-saturated closed set H containing
f_l(A)Uf_l(B) also contains fﬂl(y). That is, y0,(AUB).

ii) Since the empty set ¢ is a f-saturated closed set containing ¢= f_l(t;zi) such
that fﬂl( y)N¢=¢ for each y in ¥, we have yJ,¢ for each y in Y.

1ii) If y&€A4 then f_l( y)Cf_l(A) and each f-saturated closed set /' containing
fﬂl(A) also contains f_l( y). Therefore we have yd,A.

iv) If y 9,4 then there i1s a f-saturated closed set F containing f_l(A) such
that Fﬂf_l(y):(fﬁ. Let E=f(F") then f_l(E)=F and yd,E. If 2z&Y —FE then

Fl@cf ' -B)=X~f(E)=X—F. Hence 2z5,A for each zEY —E.
Next we show that f: (X, 0)—(Y, J,) is a K-proximity mapping. Let xJ0A

and let F be a f-saturated closed set containing f_l( f(A)) then x0F because of

FDfﬂl(f(A))DA. Hence x€F and f_l(f(x))ﬂF;écb. Consequently FDf—l(f(x))
since F is saturated. This means that f(x)d, f(A).

THEOREM 17. In the theorem 16, J, ts the finest K-proximity on Y suck that f

18 a K-proximily mapping.

PROOF. Let 0, be any K-proximity on Y such that f is a K-proximity mapp-
ing. And let y4,B then yﬁog and we have xg f_l(B) for each x In f_l(y), that
is, f_l(y)ﬂ f'"l(F)-:(b. Since f_l(E) is a f-saturated closed set containing
F7(B), ¥3,B.
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DEFINITION 11. Let (X, 0) be a K-proximity space and let f: X—Y be a
mapping. The finest K-proximity J; on ¥ such that f is a K-proximity mapping

is called the quotient K-proximity for Y relative to f and the K-proximity ¢
on X.

THEOREM 18. Let f be a K-proximity mapping of a space X onto a space Y and
let Y have the quotient K-proximiiy. Thern a mapping g on Y to a K-proximity
space Z is a K-proximity mapping iff the composition gof is a K-proximity,
mapping.

PROOF. Let gof be a K -proximity mapping and let g(y)d,g(B) then g( y)é‘gg(B).

Since geof is a K-proximity mapping, for each x in f—lg—l(g(y)), x;z?xf_lg—l

(g(B)) or for each xin £ (¥). x0 S T @@ DB or xé'xf'"l(B) and

f_l(g'"l(:g_(B'))) is a f-saturated closed set containing f_l(B) in X. Hence y/,B.
The converse is clear.
Let (X, ) be any given K-proximity space and let R be an equivalence relat-

ion on X, then we have a quotient K-proximity ¢, on the quotient set X/R defined

by the projection p, : X—X/R. Now let us consider the category ¢ of all K-
proximity spaces defined in the theorem 15 and a category £ of sets whose class
of objects 1s £ = {YXIYGOZ} and whose Hom (YX, ZX) is the set of all functions

from YX into ZX. Then we have a covariant functor F : oz—.£ such that for

each Yeo F (Y)=YX, and for each g€ Hom (&, Z), F (g):YX—-a-ZX with
F(g) (f)=gof. If we consider a subfunctor H of F such that for each Y&,

H(Y)= {fEYXl (x, Y ER :}f(x) =f(y)} and for eachg& Hom (&, 2Z2), H(g)(f)=
gof, then we obtain the following result from the above discussion and the theorem

18 :
THEOREM 19. The subfuncior H of the covariant funcior I . ot—A has a universal

element (pp, X/R).
Yonsei University
Seoul Korea
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