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ON THE MEANS OF THE PRODUCT OF TWO ENTIRE FUNCTIONS 

By P.K. Jain* 

1. Introduction. Let f(z) and g(z) be two entire functions of orders Pf'’ 

lower orders Åf' Åg' Let us define the means: 
2π l 

(1.1) Ia. ß={꿇 If(re얘기 a I g(rei fJ
) I ß d8머F， 

0 

and 
r 

(1.2) (k) l' 
Ia,a= 판rJ -xkIa,a(XXx, 

where α>0， β>0 and k+1>0. 

Pσ and 

Extending to two funcçions the results proved earlier by Rahman [6]. [꺼 , 
Lakashminarasimhan [4] has proved: 

(1.3) 

and 

(1.4) i표 f I~:검(r) τogr 드eP'+P'， provided 싼:. Pg<∞· 
r→∞ 1 1없(r) 

My chief aim in this note is to improve (1.4) and obtain an asymptotic relation 

between the means defined by (1.1) and (1.2). 1n ~ 2. the results are stated 

whereas their proofs are given in ~ 3. 

2. Statements of the main results and their diseussions. 

THEOREM 1. If 

iEE log log Ia. β(r) =μ， (0드lJ<μ드∞). 
;. .00 log r ν 

then λ三max(Åf• Åg)드U드μ드max (pf' P심드p. 
-
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THEOREM 2. For any entiγe functions f(z) and g(z). 

I륭 j월펀) 1옮=eg 
길에 Iι~(r) J e-

REMARK. A part of this theorem includes (1.4) as a very special case~ 

THEOREM 3. If μ<∞• then log 1 a.야} .... log 1앓 (r). as γ→∞. 

REMARK. If f= g and α=β=δ12. the result in theorem 3 reduces to a result 

for one function f. proved earliest by Kamthan [1] and Lakashminarashiman [3] 

(originally in a less general form due to Rahman [6]). 

3. Proof of theorem 1. Following the arguments in ([4). p.420). for R> r. 
we have 

(3.1) Ia.ß(r)드 1 (M(r. f))α(M(r. g))β 
l 

a+β < R+γ 
-‘ R-r α+ß Ia.lR). 

where M(r. f) and M(r. g) are the maximum modulü of f(z) and g(z). respecti

vely, on Iz I =r. The left hand side of this gives 

log μ， ß(r) <싫리 arP'+Ô+βrP'+Ô 

=o(l)rP+e(1 +o(l)r-η· r= Ipj-Pgl. 

for r는ro=ro(ε). e>O. Hence μ드p. 

Further. taking R=2r in the left hand inequality of (3.1). and proceeding 

similarly as above. it is established that J)늘 À.. 

This proves the theorem. 

The proofs of theorems 2 &3 needs the following lemma due to Kamthan( [2]. 

lemmas 5 & 6) : 

LEMMA. Let P(r) be a convex function with respect to ψ(r) in (0, ∞). ψ(r) 

being an absolμtely continuoμs an깅 쩌creasing function for 0 <r <∞. Also. let 

logPCr) _A 
많캠원스=Ë. (0드B드A드∞). 

Then 

(3.2) 
A 

교 exp{(P(r) -N (r))Cφ(r)) -1} =e-~’ 
e 
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where N(1') is a 1'eal valued function defined on (0, ∞) as: 
7 

exp {N(1')+(k+l)ψ(1')} = J exp (P(x)+kψ(x))dψ(x). 
0 

Fu1'theγ， 

(3.3) 

if A<∞， then 

P(1'}'.N(1'), as l'→∞. 
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Proofs of theorems 2 & 3. The function If(z) I a I g(z) I β is of class PL ([5]. 

p.9) and so log 1 a, 라서 is a convex function of log l' [5]. Therefore, in notations 

of the lemma above, if we take 

P(1')=Ia， β(1')， ψ(1')=log r , 

then 
(k) 

A= t.t, B=ν and N(r] =1og Ia a(7). 

Hence the results (3.2) and (3.3) in the lemma yield, respectively. the theorems 

2 and 3. 
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