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NOTE ON SUBl\IANIFOLDS WITH (f, g , u, v, l)-STRUCTURE 
IN AN EVEN-DIMENSIONAL EUCLIDEAN SPACE 

By Jung Hwan Kwon 

~ O. Introduetion. 

Let M be a differentiable manifold of class C∞. If there exist in M a (1, 1) 

type tensor field f , two vector fields U, V, two 1-forms U, v, a function À. and 
a Riemannian metric g satisfying the conditions; 

ix=-x+μ(X)U +v(X)V, 
jU=-λV， . jV=+ÀU, 

μ(fX)=+À.v(X) ， v(fX)=-λμ(X)， 

μ(U)=v(V)=1-À2， v(U)=μ(V)=O， 
g(fX , jY)=g(X, Y)-u(X)κ(Y)-v(X씨(Y)， 

g(U, X)=μ(X) ， g(V, X)=v(X) 

for any vector fields X and Y, then M is said to have an (f,!f; u, v, λ)-structure 
(cf. [fl). 

Submanifolds of codimension 2 in an even-dimensional Euclidean space induce 

an (f, g , U, v, λ)-structure (cf. [6l). 

Recently submanifolds of codimension 2 in an even-dimensional Euclidean space 

have been studied by S. S. Eum [2]. U-Hang Ki [2], [3], [5]. Jin Suk Pak [3], 

M. Okumura [4l , [7l , K. Yano [6l , [7l and many authors. 

The main purpose of the present paper is to study complete submanifolds of 

codimension 2 in an even-dimensional Euclidean space such that jH -Hf=O, 

"ÿ xÀ.=r/Jν(X) ， r/J being a differentiable function. 

In ~ 1, we recall the properties of a submanifold of codimension 2 in an even

dimensional Euclidean space. 

In ~ 2, we find several lemmas to be useful in ~ 3. 

In ~ 3, we investigate properties of a complete submanifold of codimension 2 

in an even-dimensional Euclidean space under our assumptions stated above. 
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~ 1. Prelirninaries. 

Let E be a (2n+2)-dimensional Euclidean space and X the position vector 
starting from the origin of E and ending at a point of E. 

The E being even-dimensional, it can be regarded as a flat Kählerian manifold 
2 with the numerical structure tensor F : F~ = - 1, where 1 denotes the unit tensor 

and FY.FZ=Y.Z for arbitrary vector fields Y and Z , where the dot denotes the 

inner product of vectors of E. 

We consider a 2n-dimensional orientable manifold M covered by a system of 

coordinate neighborhoods {U: x"}, where here and in the sequel the indices h, z., 

j , … run over the range {1, 2, .. _, 2n}. 
We assume that M is immersed in E by X: M-• E and put Xi=낀.X， 깐=í}/í}xo'. 

Then X i are 21Z linearly independent vector fields tangent to the submanifold 

M and gμ=X/Xi are local components of the tensor representing the Rieman:nian 

metric induced on M from that of E. 

We denote by C and D two mutually orthogonal unit normals to the submanifold 

M such that X i , C, D form the positive orientation of E , then M induces an 

(f, g , U, V, λ)-structure which satisfies the following; 

(l.1) Fjfi k= -kjiμh+hj hz%-kjtZyh十kj hUi’ 

(1. 2) Pj%i= -kjt￡ t-Ak1i+l1깐， 

(1.3) 

(1.4) 

Pj깐=-kjt간 t+λkji-lj싼’ 
?jλ= -k1tUt+kjt%t, 

where \lj denotes the operator of covariant differentiation with respect to the 

Riemannian connection, hji and kji are components of the second fundamental 

tensors πith ， respect to C and D respectively defined by hj h=hii/h and kj h=kjih, J "Jt<> ---- --J "J! 

and lj are components of the third fundamental tensor, that is, component of 

the connection induced on the normal bundle (cf. [5], [7]). 
In the sequel, we need the structure equations of the submanifold M , i. e. , the 

following equations of Gauss 

(1 .5) K .. ;.= h;;h .. -h,.h"+k,,k L>. -k"þ kjih -,. ji" kh --:- ,. jh" ki -, 1< ji" kh - ,. jh" ki’ 

where K kjih are covariant components of the curvature tensor of M , and equations 

of Codazzi and Ricci 

(1.6) P씹·t-?jkk--l샘ji+I1kkt =0, 



(1.7) 

(1.8) 

Notø on Submani[olds with ([, g, κ， v, J.)-Structurø 

"Vk상-"Vjkki+lk낀i-l1kkz=o， 

?jlz-인lj+kjtki t - kitkj t=α 

K. Yano and U-Hang Ki proved in [5] 
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THEOREM 1.1. Let M be a complete sμbmam'fold 01 codimension 2 쩌 an even-
2n+2 dimensional Eμclidean space E~"-r~ sμch that the scalar curvature 01 M t's constant 

and theγe aγe global μnit normals C and D to M which are parallel in the 1wrmal 

bundle. 

11 fH =HI and IK = - KI hold, where H and K a1’e the second liμndamental 

tensors 01 M res，φectively with res엉ect to C and D, 1 beÏ1zg the tens01’ lield 01 type 
2π+2 

(1, 1) a，뺑ea서ng in the induced strμctμre ct, g , μ， v， il.) 01 M , then M is in E~"'r 
’ 

proνided that λ(1-λ2) is non-zero almost everywhere in M , congruent to one 01 the 

lollowing submanilolds: 

E
2n, S2n(r) , Sn(r)XSn(r) , SI(r)xén- 1 

(l=l, 2, …, 2n-1), 

Sk(r)XSk(r)XE2n-2k (k=l , 2, …, n-1) , 

where S\1') denotes a k-diηzensional sphere 01 radz"us r(>O) imbedded natμrally in 
R2η+2 

~ 2. The case in which f and H cornrnute and "V x À.=tþv(X). 

We suppose that 1 and H commute in M , that is, 

(2. 1) 져thtk-hj퍼 h=O， 

which is equivalent to 

(2.2) 산지1+화찬=0. 

Under this conditions K. Yano and U-Hang Ki have proved in [5] 

LEMMA 2.1. Let X(M) be a submanilold 01 codimension 2 01 E sμch that the 

global unit no1'mals C and D are paγallel in the normal bμndle. Assume that (2.1) 

is satislied and the lunction λ(1- il.2) is non-ze1'o almost everywhere in M. 

Then μle have 

(2.3) 

(2.4) 

씬itμt=Mj’ 
h. t .• h 

ht 까 =phi ’ 

낀tUt=P깐， 

p=constant, 
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(2.5) "V .h:;=O. k'"ji 

Jung Hwan Kwon 

p bez"ng gz'ven by (1-λ2)P=kts%tμS=ktsPtνS. 

We now prove that 

LEMMA 2.2. Let X(M) be a sμbmanifold 01 codimension 2 01 E sμch that thø 

global μnz't normals C aud D are paral!el z'n the ízormal bμndle and the lunctz'o1Z 

À(1-λ2) Z"S almost everywhere noκ-zero. Assume that (2. 1) and 

(2.6) 까À=찌， 

rþ being non-zero dì파fereχtiabl e lu1tcü'oχ on M. are satislied. theκ 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

kjtχt=(þ+rþ)깐’ 

짝tUt= (P+￠)%j+β깐， 

(1-λ2) (P1￠) = (Utpt@)νj+λ￠βx1’ 

(1_À2)(한Ji t -한tfjt)=λβ(μjνi-μiVj)' 

where β is given by (1-λ2)β=ktsUt1ls. 

PROOF. From (1.4). (2.3) and (2.6) , we have (2.7). 

Differentiating (2.6) covariantly and using (2.3) with 강=0. we find 

"V k "V jÀ = ("V때)V j+rþ( - k kt져 t+λhkj). 
from which. taking skew-symmetric parts. 

(2.11) ("V때)Vj=("Vjrþ)Vk+rþ (kkt져 t -kjJkt). 

Transvecting (2. 11) with vJ and substituting (2.7). we find 

(2.12) (1 -λ2) ("V꺼) = {J?t@+λrþ(p+rþ)} Vj -뼈씬s져 t. 

Substituting (2.12) into (2.11). we get 

(2.13) kt/(져 tνi-지 tUj) = (1-λ2)(한t져 t -kjt파 t). 

Transvecting (2.13) with 1/ and using (2.7). we obtain 

- khst,st%+ktst,t1lSgh1li +XktsI，s파 tZth 

-=(1-λ2)( _ 싫 +kitutuk -상fhjfi t), 

from which. taking skew-symmetric parts in h and i. 

‘ 
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ktsνs(fi tUh -fh tui) =λ(감tutuz -한tutuh). 

Transvecting this with 상， we have (2.8). Substituting (2.8) into (2.12) and 

(2.13), we have respectively (2.9) and (2.10). This completes the proof of Lemma 

2. 2. ‘ 

LEMMA 2.3. Under the same assumptions as those stated 쩌 Lemma 2. 2, u;e have 

(2.14) 

(2.15) 

PROOF. 

kt t=β， 

(1-λ2) {한t한 t+(p+ø)상} 

= (p+ø)(2P+ø)(χj짝+Uj깐)+β2U1칸 
+β(P+ø)(Uj깐+UiVj). 

Transvecting (2.10) with j1t, ￦e find 

kt t+kts%tμS+kts1，tUs= -βλ2， 

ftom which, using (2. 7) and (2.8), we have (2.14). 

Differ밍ltiating (2.8) covariantly and using (1.2) , (1.3) and (2.9), we find 

(Pikjt)Zlt+전/-한s .fts+Ahi t) 

=1과빡ι +효f월)u.+(P+ø)( -h;,/. t_λk •• ) 1-À.“ 1-λ2 v ‘,-)- ....... -...... U"J η 

+ ('Vi，β〕Oj+β( -kü져 t+λkij)， 

from which, taking skew-symmetric parts in z' and j and using (2.10) , we get 

(2.16) -2kjt한sfts=(Piβ)까-(?jg)깐-2(P+￠)kdtJ;t 

+ 1τ(νtpt@十λβ2)(x u--w ν ). 
1-À. 

Transvecting (2.16) with tl and using (2.8) and (2.9), we find 

(2.17) (1 -iÒ('Vi.β) = {(”tpt￠) +λβ，2 +2il.(p十rþ)(2P+rþ)} μi+(νtptβ)Vi• 
Substituting (2.17) into (2.16) and using (2.10), we obtain 

(1 -λ2) {，진갱~t+(φ+rþ)상}져 t 

= -il.β{(p+ø)αJ싼+ßνjμi-(P+Ø)ν';Vi} 

-λ(P+ø)(2，ψ十rþ)(UiVj-UjVi).
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Transvecting this I h " we find 

(1-λ2) {한 쟁'st+(P+Ø)hjt} ( -δ~+Uhμt+UKUt) 
= -i1.β {λ(P+Ø)Uph +i1.，βUjνh+λ(P+Ø)VjUh} 

-λ2(p+ø)(2P+Ø) (μ:jUh +V/h), 

from which, using (2.3) , (2.7) and (2.8) , we have (2.15). Thus, Lemma 2.3 is 
proved. 

S 3. Cornplete subrnanifolds with eertain conditions. 

1n this section, we first prove 

THEOREM 3. 1. Let M be a complete subηzanilold codimension 2 쩌 a (2n +2)

dimensional EκcUdean space E sμch that the scala1' cu1'vatu1'e 01 M is constant and 

IH=HI and the1'e a1'e global μnit no1'mals C and D to M αhich a1'e pa1'allel ill 

the no1'mal bundle, whe1'e H is the second fiμndaηzental tenso1' 01 M with 1'espect to 

C , 1 is tenso1' lield 01 type (1, 1) a.뺑ea1'ing in the induced st1'μctu1'e (f, g , κ， ν， i1.) 
01 M. 1/ v' x i1. = Øv(X) , ø being non-zero dzfle1'entiable luκction on M , tJ.κm M is 

in E , cong1'μent to one 01 the lollowz'ng subηzaχilolds: 

E 2n
, S2n(1'), Sn(1')xS'I(1'), S'(1')XE2n- 1 

(1=1, 2, .'., 2n-1) , 

2n-2k S"(1')XSk(서 XE~"-~~ (k= 1, 2, …, n-1) , 

whe1'e, Sk (1') denotes a k-dz'me1Zsz'onal sψhe1'e 01 1'adiμs 1'(>0) 'iηzbedded natμra11y 
쩌 E (cl. Theo1'eηz 3.2 in [2]). 

PROOF. We have from equation (1.5) of Gauss, 

Kjt=(kt t)kjz-kjtht t+(한 t)진z-진tki t, 
from which, using (2.4) and (2.14), 

Kji=(ht t-P〕낀z+β상-kjt한 
t, 

from which, transvecting with gJt, 

(218) gjaκii=(ht t-P)ht t+β2-힌zki， 
which gives the scalar curvature of M. 

On the other hand, we have from (2.4) , 

(2.19) ht t=2%@, m=constant, 

where m being the multiplicity 아 t뾰 eigenvalue p of ht. 
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Transvecting (2.15) with g'z and using (2.19), we find 

(2.20) 상성i= - (P+￠)썼+β2 +2(P+rþ) (2P+rþ). 

Substituting (2.19) and (2.20) into (2.18), we obtain 
ii. "2 (2.21) gl'kji =ηψ (ηz-l)+~ψ(p+rþ) -2(ρ+Ø)(~엉+rþ) ， 

which implies that Ó is constant because of gJZKji=const. Therefore, using (2.9) 

and (2.10) , we have 

(2.22) 한t지 t-kztJ; t=o. 
@ 

.using Theorem 1. 1, we get the results. 

Transvecting (1. 5) with 상얘2심 and u밍ng (2.3), (2.7) and (2.8) , we have 

Kkjih:μ상상ν，h=rþ(2P+rþ) (1- λ정2. 

Hence, the sectional curvature K(O) with respect to the section 0 spanned by 

μh and z,h is given by 

K? ·%k녕χiνh 
K(O)=- "Jz인 ‘ = -rþ(2P+Ø) , 

〔κ/，，/)(ν'l)

which shows that if K(O) is constant, then rþ is constant. Thus we see from (2 • 

. 21) thac Òe scalar curvature of M is constant. Hence, we haye 

COROLLARY 3.2. Let M be a comp!ete sμbmanzfold 01 codz'mension 2 쩌 a (2n+ 

2)-dz'mcnsz'onal Eχclt'dean space E such that IH=HI and there are global μnzï 

normals C αzd D to M wht'ch are parallel z'n the normal bundle, where H is the 

.second lundaηzental te;zsor 01 M with respect to C, 1 is tlze tensor lield 01 type 

(1, 1) αþpearing in the z'nduced strμctμre Cf, g , U, v, À.) 01 M. 11 the sectional 

curvatμre K(O) with respect to the section spanned by μha%d νh z's constant and λ(1-

λ2) tS %0χ-zero alηzost eveη，where 싫 M , 'ÿ xλ =rþv(X), rþ being non-zero di，행ren
iiable lunctiolZ, then the same conclusz'on as z"n Theorem 3.1 is valid. 

Kyungpook University 
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