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INVERSES OF CIRCULANT MATRICES AND BLOCK
CIRCULANT MATRICES

By George E. Trapp

1. 0. Introduction.

Circulant matrices are part of the folklore. This paper has two purposes; first
to summarize some of the elementary properties of circulants, and second to-
extend these results to block circulants. Circulants arise in the theory of statistical
design [5], {6], [7] and in many applications in physics, see [1]. The books [3],
4], [9], [10], and [12] each contain some results on circulants.

We will consider #X# real matrices. Standard results of linear algebra will be:
assumed, see [3], or [8]. A matrix A is called a circulant whenever each row
may be obtained from the row above by cyclically moving each element one
place to the right. Example, the A given below is a circulant.

a b ¢
A = C a b f
b c a

In section 2, we summarize some facts on nth roots of unity. It will be shown:
that the eigenvectors of circulants have as their components the =nth roots.
Section 3 deals with circulant properties basic to the study of block circulants.
Section 4 considers block circulants. A by product of our approach to circulants:
IS a very elementary algorithm to compute the Moore-Penrose generalized
inverse of a symmetric circulant. In particular this gives a method of computing:
the true inverse of non-singular circulants.

In sectoin 5, we mention some related topics and future work. Because of our
approach to block circulants, we are naturally lead to consider other block
matrices. For example, the concept of a block Vandermonde matrix is discussed..

2.0. Roots of Unity.

Our approach i1s to diagonalize the circulant matrices. We therefore need to-
find the eigenvalues and eigenvectors of circulants.
To aid in our investigation of the elgenvalues and eigenvectors, we need to
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summarize some of the properties of the roots of unity., We will only sketch the
proofs. Details may be found in (2] or [11].

The polynomial X"=1 has #» distinct solutions. X=1 is always a solution; for
even #, X=—1 is another. In general the » roots of unity are given by w,=cos

( 2Zk )-{-z'sin( 2::k ) for £=0, --n-—1: notice wy=1. Also it is easily seen that

b

wk:w‘f. We will denote the complex conjugate of w by #w. For any polynomial
equation we have that roots occur in complex conjugate pairs. Therefore @, is

also an #th root and can be written 'zﬁkr-wf for some 7, 0<j<<z—1.

Since w,w,=1, we see w‘f"” =1, But w; is always a primitive »th root, and

hence n=Fk+j. Therefore #,=w’"". Notice for n=2p, w,==1, and W,=—1 as

expected. | |
Using the above result, the following orthogonality condition may be verified.

LEMMA 1. Let a;=(1, w;, wﬁ-, e, WS =1, then Xy ;=n0,; where 0,; the Kronecker

1z2f i=7
della 5:{ e e
Y10 of i#.
1 t ' B - n—1
PROOF. &y-ay=33 (W But w;=wj and @,=w,"", therefore &p-a;=22
= -

: n—1 . :
(wf"” Ry = Zo(w{_k)’ since wi=1. Now w{"k;él if 7:4k and therefore wi"k is one
=

of the other #nth roots. Since X"—lz(X—l)(X”_1+X”+--- +X+1) we see

n—1 _ - n-—1 ) ‘.'1:—1f
Zow‘——-o for w#1. If j=Fk then w]/™"=1 and Zo(w{ )’=Zol =.
= ~ = =
Lemma 1 will be used in determining the inverse of the matrix of eigenvectors
of a circulant.

3.0 Diagonalization of Circulants.

In this section we show that every circulant may be diagonalized. Moreover,
the matrix used in the diagonalization is the same for every circulant. This fact
allows us to prove easily many results on circulants. If A is a circulant, then
A has the form

- ao al .o w an—l__‘
an—l ao " aﬂ—z
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Let a;=(1, w; w? vy W ;-"'1) where w; is an #th root of unity. Then direct

computation ylelds

ao+ale+ ...... -l-a” 1w;}'—1‘]
~1
(1) Aaj= aﬂ—l—l_aowf_]-m—l_an—?-w? |
| | J
G4 +52Wj eceens -l-aow?_" ' —J
Since w”=1 we may rewrite the RHS of (1) as
/1
w;
(aytayw ++-ta, w7 H :
]
n~—-1
Therefore «; is an eigenvector of A with eigenvalue 4,= kEOa kw'?.
Let P=[ap, «= , &, 1, here P is the matrix with columns the a. Then if D

is the diagonal matrix of 4,4, _; we have AP=PD,

P is a Vandermonde matrix and since the w; are distinct, it is non-singular.
We then have

(2) P "AP=D.

Equation (2) may be written as A=PDP~. We will now show that by defining
the matrix A as PDP™!, for an arbitrary diagonal matrix D gives rise to a
circulant, The following lemma supplies an explicit form for P

S_ 1y 1l

PROOF. It is enough to show P'P=#nI. P'P may be written

Therefore the 7/ element of P'P is given by a;+0,, But Lemma 1 shows that
O;~a.=n0;; as required.

We now proceed to show that if A is defined PDP~!, then A is a circulant.

d, O

Let D= (00'-. p ) be arbitrary. Then PDP_1=%"PDP* may be computed as
n—1

follows:
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d
PD: [Q'O’ ere an-],] ( 0"‘d ): [doa()' ces. dﬂ—la#--l]'
—1

o4

%o
Th'en -%Z-PDP*=-;12—[d0aO. e, d, 0 ] E :
Xp—1
1 (x4, S5 @, e =d@)"
= 2dw, ZTdwl, e ngwz(wz)n_z
\Zdzwf—l Zdz.w?—li'{?z- ------ ngwzn_l(ﬁz)nﬂlf

Since w,w.=1, and wf——:z‘&f ~* we see that the resulting matrix is a circulant,
with the a; given by
L " 1t
ni=o/l ’°
Summarizing the above we have the following theorem.

ai—

THOEREM 3. With P as above, a matrix A is a circulant if and only if —;%—P*AP

r—1
is a diagonal matrix. Moreover, the eigenvalues of A are A, =2 a kwf with
k=

w; an nin root of unity.

The following theorem summarizes some of the major properties of circulants,
the proof depends heavily on Theorem 3.

THEOREM 4, Let A and B be circulants, then A¥, A1 (if A is invertible) and
A-+B are circulants. Moreover AB is a circulant and AB=BA.

PROOF. A may be written A=PDP~! then if A is invertible 4~ '=pp~tp!

1 1 s
~P¥, A¥==-PD*P* and

and by Theorem 3 /—1_1 is a circulant. Since P"l—

then A* is a circulant.
B may be written B-—--PDIP—I, therefore

A+B=P(D+D)P~" and
AB=P(DD)P~1
=P(D,D)P~!
=BA
and these are both circulants.

Given the representation A=PDP~" we may define A*=PD*P~! where D*
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is the diagonal matrix with diagonal d;; =1/d,; if 4,0 and dj; =0 if d;.=0. DV
is the Moore-Penrose Generalized inverse of D. The following facts follow easily
) 44T A=PpP YD P HrpP™H
—=pDDtpp~!
—ppp~! since DDYD=D
=A
i)y at44t=pD*P~YHpDP™YH (PDTPTH
=A™ as above
iii) 44*=PDD*P~'=-_PDD" P

(AA+)*=TIZ-PDD+P*=AA+ if D=D¥*

iv) (ATA)*=47A as in iii)
The four conditions given above demonstrate that the A7 so defined is the

1 1

Moore-Penrose Generalized inverse of A. Since P =—;Z—P*, we have an elemen-

tary method of computing AT. If in fact A is invertible, the above procedure
yields A™L The major portion of computation other than matrix multiplication
consists in accurately finding the »th roots of unity. Two comments are in order
here: 1) since A" is in fact a circulant, one needs only compute the first row of
AT (computation of the other rows could be used as a check), and 2) we are
most interested in the generalized inverse for symmetric matrices-the above
analysis tacitly assumed that A is symmetric.

4.0 Block Circulants.

Having presented some of the major properties of circulants, we now turn to
block circulants. There seems to be some ambiguity involved in the term block
circulant.

We define A to be a bloeck circulant matrix if it has the following form

Ay Ay A
Am-—l ‘AO o Am-—Z.

_Al A2 o A-O "'-J.
The A; are nXn matrices. We are most interested in the case when the A, are

themselves circulants although this is not needed in all that follows. Notice,
exCept in unusual cases, the matrix A4 itself is not a circulant. Example, the 4
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given below is block circulant, but not circulant.
-1 2 1 3 4 -

4 32 1 .
We would like to extend the results of section 3 to block circulants.

We begin by illustrating the approach for a 3 block matrix.
rdAd B C-

let E=|C A B | where A, B, C are #X#n matrices.
-B C A-

Let 1=7, 7; and 7, be the 3rd roots of unity. If # is any vector and 7=z,

we have the following sequence of computations.
| ABC\ |u (A+Br-+Crou
(C 4 B) (?’u )=((C+Ar-—Brz)u)
BCA (B-i—Cr——Arz)u

/ (A+B7'—I—C‘r2)u
=k(Crz—l—A+Br)m )
(Br+Cr°+A) r°u

Now pick # so that (A—I—Br—l—Crz)g:Z;ﬂ_, then
ABC\ /u (A+Br+Cru \
(C A B (m )z((A-I-Br—l-Crz)ru )

BCA : (A—I—Br—l—Crz)rzzz

¥ u
A(u) 7
=(7t(ru) )zl( ru )
2(?’226) rou

Therefore our original 3 block circulant £ has 3z eigenvalues. We obtain 7 for
each choice of 7. If A, B, C are circulant, then the matrix A+Br,+Cr% is a
circulant for each root 7, and the eigenvalues can be easily determined; the

fzﬂ

matrix of eigenvectors are also easily determined; let P be as above.

Let 7P then if D={ 0 4, 0 |
7P 0 0 4,

with 4; the diagonal matrix with the eigenvalues of A4 Br;+C#% on the diagonal,
we have EQ=QD.

To complete the analogy with section 3, we must compute Q_l and show that
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by defining a matrix QDQ"1 we obtain a block circulant.
The matrix Q may be rewritten as

- P 0 Cq T I I I -
Lo o PJd L ?’SI ?‘%I ?'31 .

Since P is invertible, we need only show that the second matrix on the right
hand side is invertible to show Q is invertible, We will in fact find the inverse

for the second matrix.
Consider the following; we will omit 7, since it is 1.

- T I I - l‘ 1 I I 7
I rd 7ol "i
I oI 'y | l_ I 7ol 7ol ]

3l I(1+7,47,) IQA+7+73)
=| I(1+r;+7,) 31 .
L 1442442 - i
Since 1+7,+7,=0, we see that
- 1 I I 9=t I I
. T 7 d 7ol | = }0) A 7,
E’.-I 7T ol | I 7ol

Therefore, using the fact P~ '=—— P¥, we may write
r pP* P* P*
B S 2 S 67 S
. p* 7,p*  p2p* |,

Notice again, since P¥*=P', we have determined a simple formula for Q-l.
We also have shown that Q_IEQz'D. Moreover, we can now show that if D

is an arbitrary diagonal matrix, then by defining A:—-—QDQ"1 we obtain a block

circulant matrix, where the blocks are themselves circulants,

- D, 0 0 7]
Let D=| O D, G | then QDQ“1 may be computed as follows:
L 0 0 Do

QD is given by
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_’_ P ?'%P f%P 4dJ L O D2 ._ L P.DO ?’%PDI 7’:%P.D2 J-

Now QDQ_1 is given by

| PD, 7 PD, nPD, | | P* pP*  7ip* |
L pp, #iPD, 7PD, 1 L pPx p,px  pipx

_—

" P(Dy+Dy+DpP*  P(Do+7iDy+7,D)P*  P(Dyt7 ID+7 iDpP*

1

L ane  -—

Therefore, since r,7,=1 and r? =1, we have a block circulant matrix. Moreover,

since the blocks are given by P(D,+7 fDl—l—? gDz)P*, our results of section 3
show that the blocks are themselves circulants.

We now state the main theorem for the general case. We will omit the proof
since it is just an extension of the 3 block case given above.
[ AO o Am—-l,"l
THEOREM 5. Let A={ A,—1 4Hp Am_z-’l be a block circulant with each A,
L A4, Aye Ay 4 |
an nXn circulant matrix. Let P be the malrix of nth roots of unily as before. Lel
T *oone , 7,1 D& the mihk roots of wunity. If Q is given by the jfoilowiing block

Q= rO;P rlP o j"m—--lp

. rg‘"IP i rﬁ:iP ]
we have Q"IAQzD with D a matrix of diegonal blocks Dy, eee , D _, where each

D, is diagonal. The diagonal elements are given by the eigemnvalues of the matrix

m—1 |
EOAM?- Moreover, given any diagonal matrix D, then for AzQDQ‘l, we have A

es block circulant with each block being a circulont matrix.

We also notice that Q“1 1s given by the following.

_ P* ?OP* TOP*
Q-—1= 1 | P* 7 P¥ ves y”"i“l
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Theorem 5 allows us to prove the analogous theorem to theorem 4 for block
circulants. In particular we have the following theorem.

THEOREM 6. If A is an invertible block circulant with circulant blocks, then

A7t s of the same form.

Theorem 5 also supplies a simple algorithm for finding A™, and in particular

for A~ when A is non-singular.

Clearly, the results in this section may be extended to block-block circulants.
We define a matrix R by the following. Rz-jzﬂf_}: Q where Q is as above, and
{;,_y is a kth root of unity. If /7 is a block~block circulant, with %2 blocks, each
block being an m block circulant, we have FQ=QD with D diagonal, and the
rest of the theory would follow.

5.0 Related Work.

The matrix P of the #th roots of unity is a Vandermonde matrix. Because of
the special form of P, we did not use any of the theory of Vandermonde matrices
(except for the invertibility condition). Possibly by reformulating the problem,
this extensive théory could be used.

The matrix Q used in the block circulant case is not a Vandermonde matrix;
but we term it a block Vandermonde matrix. It would be interesting to investigate
properties of block Vandermonde matrices. In particular, the evaluation of the
determinant and the computation of the inverse. Traub’s work on Vandermonde
matrices [13] could possibly be extended to this case.

In the case of symmetric circulants, we know that the eigenvalues are real,
and that the eigenvectors may be chosen to be real. In our general treatment,
we did not find the real eigenvectors. It might help the computational procedures
if the real eigenvectors were used. At present this is not known.

Two other approaches to circulants are also available: we could use permutation
matrices [3): the block circulant case would then introduce the idea of block
permutations. Also William Anderson has noticed that circulants arise irom the
characters of particular groups.

West Virginia University
- Morgantown, West Virginia
26506 U, S. A.
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