Kyungpook Math. J.

Volume 13, Number 1
June, 1973

SPACES IN WHICH COVERGENT SEQUENCES
ARE EVENTUALLY CONSTANT

By Norman Levine

To show the inadaquacy of sequences in topological spaces, the author has
often assigned the following problem to his class: Find a set X and two different

topologies .7 and Z such that for every sequence S in X and for every point x
in X, lim S=x2(9) iff lim S=x(Z).

A simple solution is obtained by taking X uncountable, .7~ discrete and Z the
cocountable topology; for in each of the spaces (X, .77 ) and (X, Z), a sequence

S converges to x iff S is eventually z.
It is the intent of this paper to investigate spaces with precisely this property:

DEFINITION 1. A space (X, .7 ) is an E-space iff convergent sequences are
eventually constant.

We give two more examples of E-spaces.
EXAMPLE 1. Let X=1[0, 1) and Z={U : 02U or O&U and €U is countable}.

EXAMPLE 2. Let X be the positive integers and let .9 ={0 : 1&0 or 1€0 and
lim N(O:n)/n=1} where N(O:#) is the number of integers in O which are less

or equal to #z.
We leave it to the reader to verify that the above spaces are E-spaces.

DEFINITION 2. A space (X, J ) is called a T'| ;—space iff every sequence in X

has at most one limit.

As the terminology suggests, T, - is between T'; and 7'
We now proceed to characterize E-spaces in

THEOREM 1. A space (X, 9 ) is an E-space iff (1) (X, J ) is a T, -—space
and (2) every sequentially compact subset of X is finite.

PROOF. Assume that X is an E-space. Let S be a sequence in X for which
lim S=x and lim S=y. There exist integers N and M for which S(z)=x for =

=N and S(n)=y for =M. Thus x=S(N-+M)=y and (1) holds.
| +
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To show (2), let A be an infinite subset of X. It suffices to show that A is:
not sequentially compact. Take {a, : #=>1} an infinite sequence of distinct points.
in A. Clearly no subsequence of {g,: n>1} can converge since no subsequence
can eventuaily be constant.

Next, assume that (1) and (2) hold and suppose that (X, 5 ) is not an E-
space. There exists then a sequence {z, : #=1} and a point x such that lim x =
z, but z_7x for an infinite number of #: let A= {x, : x 7z}, Case 1. A4 is finite.
There exist then %y, in 4 and ¥ in A such that x,,=y for all 7. Then Kp, % and:

Xn, —Y But y=A and x& A contradicting (1).
- Case 2. A is infinite. We will show that A U {x} is sequentially compact,
contradicting (2). Let {y,:#=>1} be any infinite sequence in AU {x}. If {y :#n=>
1} is a finite set, then clearly there exists a subsequence which converges. So,
assume that {y,:!#z=1} is an infinite set. Choose s%; such that y,, #x. Then y,
=%, for some ;. Choose m,>m; such that Vo E {x, z;--, x,}. Theny, =x
for some #,>#,. Choose m3>m, such that y, & {x, x,---, z,}. Then

some #3>#, Continuing, we have y,, =x, —x in AU {x}.

Ny

V=% n, fqr'

COROLLARY 1. A space (X, J ) is an E-space iff (1) (X, ) is a T-space
and (2) every infinite sequence of distinct points in X diverges.

PROOF. Let (X, .97) be an E-space. Then (1) above follows from (1) in theorem:
1. (2) follows immediately from the definition of an E-space.

Conversely, suppose (1) and (2) hold; suppose further that (X, .9 ) is not am
E-space. There exists then a sequence {x,:#z=>1} in X and a point x in X such

that x, 7% for an infinite number of # and a point x in X such that x,7x for an
infinite number of # and x,—x. Let A= {x :x #x}. If A is finite, then rEF AE
7 and 5 &% A for an infinite number of #, a contradiction. If A is infinite, take
%z, I A such that n, <n,<n3--- and *n F%, when 277, Then {-"n,- :7>>1} Is an
infinite sequence of distinct points which converges (to x) contradicting (2).

COROLLARY 2. Let (Y, Z) be a subspace of (X, .7 ). If (X, .7 )isan E-space,
then (Y, Z') is an E-space. -

PRCOF. Properties (1) and (2) of corollary 1 are hereditary.

COROLLARY 3. Let . CZ, I and 7 being topologies for X. If (X, F ) is
an E-space, then (X, Z) is an E-space.

PROOF. Properties (1) and (2) of corollary 1 carry over to larger topologies.
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COROLLARY 4. A space (X, 7 ) is an E-space iff every countable subsbace is an
E-space. -

PROOF. If (X, .77) is an E-space, then every countable subspace is an E-space
by corollary 2.

Conversely, suppose (X, .9 ) is not an E-space. There exists then a seguence-
{x,:#n=>1} and a point x such that lim x, =z, but x 7z for an infinite number
of n. Let A={x, xy, %5, >, x,, *--}. Then (4, AN.9 ) is a countable subspace of
(X, .7 ) which is not an E-space.

THEOREM 2. Let (X, 7 )=X{(X,, %) :a&4}, all spaces being nonempty. Then
(X, 7 ) is an E-space iff (1) (X, %) isan E-space for every o&dand (2) {«:
X, ts not a singleton} is finite.

PROOF. Let (X, .97) be an E-space. Then (1) follows from corollary 2 and the:
fact that X, is homeomorphic to a subspace of X. To show (2), suppose that

{: X, is not a singleton} is infinite. Choose {a;} an infinite sequence of distinct
elements such that X «; 18 not a singleton. Let A, be a two point subset of X .
for each 7 and let A, be a singleton subset of X, for all a#a,;. Then X {4, a
€4} is a compact metrizable subset of X {X_:a&4} and hence is an iufinite:
sequentially compact subset of X contrary to (2) of theorem 1.

Conversely, suppose that (1) and (2) hold above. Let {&: X, is not a singleton}
= {ary, =veee , &} and let x,—x in X. Then x, (a,)—x(ax;)) in Xa, for 1<i<k. By
(D, x,(a)=x(a,) for n>N, and x (a)=x(a) for all ». and all a#a;. Hence x,
=x for n2N1+"-+Nk.

THEOREM 3. Let X=U {0 :a&d} in a space (X, T ) where 0,&5 for all a&4.
Then (X, J) is an E-space iff (0, O,NI" ) is an E-space for each a&A.

PROOF. If (X, .97) is an E-space, then (0,. 0,N7") is an E-space by corollary 2.

Conversely, let (O,, 0,N.9) be an E-space for each a&4, and let x,—x in X.
Then &0, for some a4 and hence x, =0, tor z=N. Thus {x,:#=>N}—z In
O, and since O, is an E-space, we have x,=x for #.>M=>N for some M.

COROLLARY 5. Let (X, 9 )=2_{X,, %) :a&d}. Then (X, F ) is an E-space
iff (X, %) is an E-space for each aE&A.

LEMMA 1. Let (X, .9 ) be a space and suppose that X=CUD, C and D being
closed sets, Then X is an E-space iff C and D are E-spaces in the subspace:
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topology.

PROOF. If X is an E-space, then C and D are E-spaces by corollary 2.

Conversely, suppose that C and D are E-spaces in the relative topology and let
z,—z in X. Case 1. x&C—D. Then *&¥DES and hence x,&Z D for n>N for

some N. Thus {x, : z>=N} is a sequence in C which converges to x and hence x,

=x for n>M>N for some M. Case 2. x&L(ND. We consider only the subcase
for which x &C for infinitely many #» and x,&D for infinitely many #z. Let {xm}

be the natural subsequence of {x,} determined by C and let {x,, } be the natural
subsequence of {x,} determined by D. Then x, =x for j=N and x, =x for ;=M
for some N and M. Thus x,=x for n=>n,+m,,.

[4

closed. Then X is an E-space iff F;1s an E-space in the relative topology for
1<,

COROLLARY 6. Let X=F\U--UF (X, ) being a space in whick each F; is

EXAMPLE 3. Let X= {0, 1, %, ., -—%—-. } with the usual topology. If E,
= [-;—} for each #», and E,= {0}, then each E, is a closed E-space, but U{E,,

#=>0} is not an FE-space.

However, we have

THOEREM 4. Let {E, . ax&d} be a locally finite family of closed sets in a space
(X, I) such that X=U{E,:a&4}. Then X is an E-space iff E , is an E-space
for each ac&A. |

PROOF. If X is an E-space, then E  is an E-space for each a&4 by corollary
2.

Conversely, let £, be an E-space for each «&4 and suppose that x,—x in X.
There exists an open set O such that x&0 and ONE,#9¢ for o, -+, o, only.
Then OCE,U--UE,. There exists an N such that x,&€0 for z>N. Thus {z,
:#=>N} is an infinite sequence in E,U--UE, which converges to z. DBy

corollary 6, EalU---UEm 1s an E-space and hence {x, 6 :n=>N} is eventually

THEOREM 5. Let (X, .9 ) be a first axiom space. Then X is an E~space iff (X,
T ) s discrete.

PROOF. We need only show that if X is an E-space, then (X, .97)is discrete.
Let x&c(A) where ACX and ¢ is the closure operator. Then there exists a
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sequence of points {z,} in A such that a,—x. But {e, : #=1} is eventually x# and
hence x&A. Thus A is closed.

COROLLARY 7. If (X, 9 ) is an E-space, then (X, I ) is discrete if X is
finite or (X, 9 ) is pseudo metrizable.

DEFINITION 2. For X any set, we denote the cofinite topology on X by 9 of

By (1) of theorem 1, .9 .9 whenever J is an E-topology on X. If X is
infinite, then .7 s 18 not an E-topology for X; in this case, T of 15 not the
largest non-£ subtopology of .~ as shown in.

THEOREM 6. Let (X, .7 ) be an infinite E—space. There exists a non-E tobology
Z on X such that & CZ CT, the inclusions being proper.

PROOF. By (1) of theorem 1, .9 .7, the inclusion being proper since SPRT
not an E-topology; take 09 -9 .. Then & O is infinite; take {x;:7>1} an
infinite sequence of distinct points in 0. Let Z =sup {I f {0,0, X}}. Then 7 of
C%, I #%. Also, ZCJ . But Z is not an E-space, for x,—x(%) for all
xEZ°0, but {x, :£>1} is not eventually x. Hence Z#.7 .

THEOREM 7. Let (X, J ) be anon E, T|-space. These exists then a topology Z
on X such that & C%, 9 #% and Z is not an E-topology for X.

PROOF. Since (X, . ) is not an E-space, there exists an infinite sequence of
points {x, :#>1} and a point x such that x —x(F ), but {x, :n=1} is not
eventually x. Since (X, ) is a T;-space, we may assume without loss of
generality that x,#x for all # and x,#x, when #n#m. Let Z =sup {7, {0, {x.
%50 X4 %g -}, X1}. Then % is not an E-topology since x,,—x(% )and x,,7%
for all n. Furthermore, .9 C# and 9 #Z since {x, x,, x4 -} €E¥ —~.7 .

EXAMPLE 4, Let X={e, 0} and .9 = {¢, {a}, X}. Clearly, .7 is a non-E-topology
for X which is not properly contained in a non-£ topology on X.

THEOREM 8. Let f: (X, 9 )—{, Z) be a continuous surjection and suppose
that .7 is the weak topology determined by f and Z. If (X, .7 ) is an E-space,
then (Y, Z) is an E-space.

PROOF. Let y,—y In Y. There exist x, in X and x in X such that f(x,)=y,
and f(x)=y. But x,—x; if *&f "' [U], then y=f(x)EU and hence f(x) =y €U
for ©>N for some integer N. Thus %, & f ”I[U] for n>N. Since (X, J7) is an
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E-space, x,=x for n=>x for n>M for some M. Thus y,=f(x,)=f(x)=y for n=
M.

X AMPLE 5. Let (X, .9 ) be an uncountable set with the cocountable topology
and let Y= 1{a, 0} with Z={9, {a}, Y}. Take 6#0#X, 0.9 ; let f. XY as
follows : f(x)=a for x€0 and f(x)=>b for x&0. Then f is an identification, (X,
J ) is an E-space, but (¥, Z) is not an E-space.

THEOREM 9. Let f: (X, I )=, Z) be a continuous injection. If (Y, Z') 1s an
E-space, then (X, ) is an E-space,

The Ohio State University
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