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SPACES IN WHICH COVERGENT SEQUENCES 
ARE EVENTUALLY CONSTANT 

By Norman Levine 

To show the inadaquacy of sequences in topological spaces, the author has 

often assigned the following problem to his class: Find a set X and two different 

topologies ‘:T and Z! such that for every sequence S in X and for every point x 
in X , lim S=x(‘:T) iff lim S=x(Z!). 

A simple solution is obtained by taking X uncountable, ‘:T discreteand Z! the 
cocountable topology; for in each of the spaces (X’ ‘:T) and (X, Z!), a sequence 
S converges to x iff S is eventually x. 

It is the intent of this paper to investigate spaces with precisely this property: 

DEFINITION 1. A space (X, ‘:T) is an E-space iff convergent sequences are 
eventually constant. 

We give two more examples of E-spaces. 

EXAMPLE 1. Let X = [0, 1] and Z! = {U : 0εU or 0εU and <(?U is countable}. 

EXAMPLE 2. Let X be the positive integers and let ‘:T= {O: 1E; O or 1EO and 
Iim N(O:n)!n=l} where N(O:쩌 is the number of integers in 0 which are less 
or equal to n. 

We leave it to the reader to verify that the above spaces are E-spaces. 

DEFINITION 2. A space (X, ‘:T) is called a T 1. Çspace iff every sequence in X 

has at most one Iimit. 

As the terminology suggests, T 1.5 is between T 1 and T앙 

We now proceed to characterize E-spaces in 

THEOREM 1. A sþace (X’ ‘.!T) is an E-sþace 修 (1) (X, ‘.!T) is a T 1. çsþace 

and (2) eveκy seqμentially comþact sμbset 01 X is finite. 

PROOF. Assume that X is an E-space. Let S be a sequence in X for which 

lim S=x and lim S=y. There exist integer.s N and M for which S(n)=x for n 

>N and S(n)=y for n늘M. Thus x=S(N+M)=y a끄d (1) holds. 

+ 
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To show (2), let A be an infmite subset of X. It suffices to show that A is: 

not sequentially compact. Take {an : n는1} an infinite sequence of distinct points 

in A. Clearly no subsequence of {an : n르1} can converge since no subsequence 

can eventually be constant. 

Next, assume that (1) and (2) hold and suppose that (X,..:T) is not an E

space. There exists then a sequence {x,,: n>l} and a point X such that lim xti= 

x, but x,,:f:.x for an infinite number of n : let A= {xn : 장;;6: x}. Case 1. A is finite. 

There exist then xnj in A and y in A such that Xal=y for a1l j. Then X7lj-• X and‘ 

Xηj-cv. But yεA and xEl A contradicting (1). 

Case 2. A is inÍÌnite. We will show that A U {x} is sequentially compact, 

contradicting (2). Let {yn : n르1} be any infinite sequence in AU {x}. If {y,,: n츠 

1} is a fjnite set, then cIearly there exists a subsequence which converges. 80, 

assume that {Y,,: n르1} is an infinite set. Choose 1n1 such that Ym1 ;;6:x. Then Ym1 
=X1l1 for some lZ1• Choose m2>m1 such that Y71'-.줄 {X, %"1 ••• ' X

Il1}. Then y찌=x% 

for some n2> 1Z1. Choose ηz3>m2 such that Ym.El {X, X1 ••• , Xn.}. Then Ym. =X~서 for 

some n3>n2• Continuing, we have Ymj=Xnj• X in AU{x}. 

COROLLARY 1. A space (X, ..:T) is an E-space ill (1) (X , ‘:T) is a T Cspace‘ 

mzd (2) every in.꺼~12ite seqzumce 01 distinct points iχ X diverges. 

PROOF. Let (X, ‘:T) be an E-space. Then (1) above follows from (1) in theorem 

1. (2) follows immediately from the definition of an E-space. 

Conversely, suppose (1) and (2) hold; suppose further that (X, ..:T) is not an 

E-space. There exists then a sequence {xn : 12는1} in X and a point x in X such 

that x,,;;6:x for an infinite number of n and a point X in X such that Xn낯X Íor an 

infinite number of n and xη-α. Let A= {x" : x ,,;;6:x}. If A is finite, then xε~Aε 

‘:r and xnEl~ A for an infinite number of n, a contradiction. If A is infinite, take 

Xnj in A such that n1 <nz<쩍… and Xnj :f:. xl1‘ when t#j. Then {Xt1 :j르1} is an 

infinite sequence of distinct points which converges (to x) contradicting (2). 

COROLLARY 2. Let (y, ~) be a sμbspace 01 (X, ..:T). 11 (X, .!T) is an E-space• 

then (y, V") is an E-space. (ι 

PROOF. Properties (1) and (2) of corollary 1 are hereditary. 

COROLLARY 3. Let ‘:rc~’ ‘:r and W being to，엉ologies lor X. 11 (X, ..:T) t.s: 

an E-space, then (X, ~) is an E-space. 

PROOF. Properties (1) ànd (2) of corollary 1 carry over to larger t매01뺑es. 



t 

Sþaces in Which Convergent Seqμences Are Evel1tually Constant 7 

COROLLARY 4. A space (X • .3'"'") is an E-space iff evc1'Y COUηlable sμbspace is an-

E-space. -

PROOF. If (X. ‘:7") is an E-space. then every countable subspace is an E-space 
by coroIIary 2. 

Conversdy. suppose (X • .3'"'") is not an E-space. There exists then a sequence 

{Xn : n는1} and a point X such that Iim Xn=X. but xn=px for an infinite number

of n. Let A= {x. X1• X2• …. xn' ' .. }. Then (A. An ‘;T) is a countable subspace of 

(X. ‘;T) which is not an E-space. 

THEOREM 2. Let (X. ‘;T)= X {(Xa• Ya) : αε.1}. all spaces bez"1zg none때ty. Then 

(X. ‘;T) is an E-space zjf (1) (Xa • ..ra) is an E-space for every αE.1 and (2) {α : 

X a is not a s쩌:gleton} is fi쩌te. 

PROOF. Let (X. ‘;T) be an E-space. Then (1) foIIows from coroIIary 2 and the 
fact that X a is homeomorphic to a subspace of X. To show (2). suppose that 

{a:Xα is not a singleton} is infinite. Choose {αi} an infinite sequence of distinct 

elements such that X m is not a singleton. Let Aα be a two point subset of X a; 

for each i and let Aa be a singleton subset of X a for aII α낯연. Then X {Aa: α 

E .1} is a compact metrizable subset of X {X a : αE.1} and hence is an iufinite 

sequentiaIIy compact subset of X contrary to (2) of theorem 1. 

Conversely. suppose that (1) and (2) hold above. Let {a : X a is not a singleton} 

={αl' ......• a k} and Iet 잔-->.X in X. Then Xn(αi)→x(따) in XαI for 1드i드k. By 

(1), X，，(αi)=X(αi) for n는Ni and xn(a) =x(α) for aII n. and aII α#αi' Hence Xn 
=X for n는N1 + ... +Nk• 

THEOREM 3. Let X= U {Oa : αε.1} 쩌 a space (X. ‘;T) where Oaε‘;T forall αε.1 •. 

Theχ (X, .3'"'") is an E-space iff (Oa’ Oan‘;T) is an E-space for each αε.1. 

PROOF. If (X. ‘:T) is an E-space, then (Oa ’ Oan.3'"'") is an E-space by coroIlary 2._ 

Conversely. let (0α.Oan ‘;T) be an E-space for each αε.1， and Iet Xn• x in X. 

Then xEOα for some αε.1 and hence x"εoα for n는N. Thus {xn : n는N} 'X in 

Oa and since Oa is an E-space. we have xη=X for 1Z는M르N for some M. 

COROLLARY 5. Let (X, ‘:T)=2:: {Xα， 종) : αε.1}. Then (X, .!T) z's an E-space 

iff (Xα， Ya) is an E-space for each αε.1. 

LEMMA 1. Let (X, ‘:T) be a s，ψace and su뺑ose that X=CUD, C and D bez'ng 

closed sets. Then X is an E-space zjf C and D are E-sþαces in the subsψacc' 
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topology. 

PROOF. lf X is an E-space, then C and D are E-spaces by corollary 2. 

Conversely, suppose that C and D are E-spaces in the relative topology and let 

좌→x in X. Case 1. xεC-D. Then xεÝ?Dε:T" and hence xnεÝ?D for n>N for 

some N. Thus {xn : n는N} is a sequence in C which converges to X and hence Xn 

=X for n르M> N for some M • . Case 2. XεCnD. We consider only the subcase 

for which %11εC for infinitely many n and XnεD for infinitely many n. Let {Xn) 

be the natural subsequence of {xn} determined by C and let {xm) be the natural 

subsequence of {Xn} determined by D. Then xtZ1=x forj르N and Xmj=X for j능M 

for some N and M. Thus Xn=X for n르nN+mM• 

COROLLARY 6. Let X=F1U---UFn, (X, ‘:T") being à space t'n wht'ch each Fi is 

closed. Then X is an E-space iff Fi is an E-space in the relative topology for 

l드i드n. 

However. we have 

THOEREM 4. Let {Eα : αε.1} be a locally fi쩌te fam써I of closed sets 쩌 a space 

(X. ‘:T") sμch that X = U {Eα : αε.1}. Then X is an E-space iff Ea is an E-space 
jor each αε.1. 

PROOF. If X is an E-space. then Ea is an E-space for each αε.1 by corollary 

2. 

Conversely, let Ea be an E-space for each αE.1 and suppose that Xn• X in X. 

There exists an open set 0 such that Xεo and onEa,=F-r!J for αl' …, αk only. 

Then 0ζE~U … UE~.. There exists an N such that X εo for n늘N. Thus {xn α1 - - - a"w - ---- - .... ------ --- _. ----... ----- p.n 

: n르N} is an infinite sequence in EαlU…UEak which converges to x. By 

corollary 6, Ea.U"'UE따 is an. E-space and hence {xn : n는N} is eventually 
X. 

THEOREM 5. Let (X • .!T) be a first axiom space. Then X is an E-space iff (X • 

.!T) is discrete. 

PROOF. We need only show that if X is an E-space, then (X. ‘:T") is discrete. 

Let Xεc(A) where ACX and c is the cIosure operator. Then there exists a 
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sequencc of points {all} in A such that all-'x. But {an : n르1} is eventually x and 

hence xεA. Thus A is closed. 

COROLLARY 7. 11 (X. .r) z.s an E-spacι then (X. .r) is discrete il X is 

It'짜te or (X. .r) z.s pseμdo ’netrizable. 

DEFINITION 2. For X any set. we denote the cofinite topology on X by ‘r c!' 

뀔T (1) of theorem 1. .rc!CY wheneγer Y is an E-topology on X. If X is 

infinite. then ‘r c! is not an E-topology for X; in this case. ‘r c! is not the 

largest non-E subtopology of ‘r as shown in. 

THEOREM 6. Let (X •. Y) be an 쩌ii짜te E-space. There exists a non-E topology 

~ on X such that ‘rc!c~ιr. the inclusions being proper. 

PROOF. By (1) of theorem 1’ ‘rc!ζ:T. the inclusion being proper since Y C! is 

not an E-topology; take 0ε:7-‘7나. Then <(! 0 is infinite; take {깐 : i는1} an 

infinite sequence of distillCt points in Vf'O. Let ~ =sup {‘r c!' {Iþ. O. X}}. Then .rc! 

C~. Y cf~?/' Also. ~c‘r. But ~ is not an E-space. for xi→x(~) for all 

X드~O. but {xi : i르1} is not eventually x. Hence zf ~‘r. 

THEOREM 7. Let (X. ‘r) be a non E. T Cspace. These exists then a topology zf 

on X such that ‘7ζ~’ ‘r ~~ and zf z.s not an E-topology lor X. 

PROOF. Since (X. ‘:T) is not an E-space. there exists an infinite sequence of 

points {xn : n는1} and a point x such that xn-• x(.r). but {Xn : n르1} is not 

eventually x. Since (X. ‘!T) is a T Cspace. we may assume without loss of 

generality that Xn~X for all n and Xn낯Xm when n~m. Let Zf=sup {‘r. {ø. {x. 

X2' x4' x6 • ••• }, X}}. Then ~ is not an E-topology since X2n→x(~)and x2n동X 

for all n. Furthermore. ‘rcZf and ‘r ~Zf since {x. X2• X4• …} εZf-.r. 

EXAMPLE 4. Let X = {a. b} and ‘r = {Iþ. {a}. X}. Clearly. Y is a non-E-topology 

for X which is not properly contained in a non-E topology on X. 

THEOREM 8. Let 1: (X’ ‘r)• (Y. Zf) be a continuous surjection and suppose 

that ‘r is the weak topology determined by 1 and ~. If (X. ‘r) is an E-space. 

then (Y. ~) is an E-space. 

PROOF. Let y n•:y in Y. There exist Xn in X and x in X such that I(xn) = Y n 
and I(x) =y. But Xn• X; if Xε1-1 [Ul. then y=/(x)EU and hence l(x,)=ynEU 
for n는N for some integer N. Thus x야E 1 -1 [Ul for n르N. Sincc (X’ ‘r) is an 
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E-space, Xn=X for n르x for n르M for some M. Thus Yn=f(x,) =f(x)=y for n므 

M. 

~AMPLE 5. Let (X, .!T) be an uncountable set with the cocountable topology 

and let Y = {a , b} w:ith W' = 뼈， {a} , Y}. Take r/J=;f:. O=;f:.X , 0ε!T: let f: X • Yas 
follows: f(x) =a for xεo and f(x)=b for x줄O. Then f is an identification, (X, 

‘!T) is an E-space, but (Y. :l') is not an E-space. 

THEOREM 9. Let f: (X • .!T)• (Y. W') be a continzeous 싫iection. If (Y. W') is an 
E-space. then (X. ‘r) is an E-space. 

The Ohio State University 
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