LIFTING TENSOR FIELDS AND CONNECTIONS TO TANGENT BUNDLES¹

SHIGERU ISHIHARA

The differential geometry of tangent bundles of Riemannian manifolds studied by Sasaki [7]. Yano and Kobayashi [9] studied prolongation of tensor fields and connections to tangent bundles. In the present note, we give a brief sketch of the theory of prolongation of tensor fields and connections to tangent bundles.

Let M be an n-dimensional differenctiable manifold. Denote by T(M) the tangent bundle over M and by π : $(TM) \rightarrow M$ the bundle projection of T(M) (Manifolds, functions, vector fields, tensor fields and connections we discuss are assumed to be differentiable and of class C^{∞} .) For a function f in M, we put $f^{V}=f\cdot\pi$ and call it the vertical lift of f. Since the exterior differential df of f is a 1-form in M, df can be naturally considered as a function in T(M), which is denoted by f^{C} and called the complete lift of f. For a vector field X in M, we define two vector fields X^{V} and X^{C} in T(M) in such a way that $X^{V}f^{C}=(Xf)^{V}$, f being an arbitrary function in M, and $\exp X^{C}=d(\exp X)$. We call X^{V} and X^{C} the vertical and the complete lifts of X, respectively. For a 1-form ω in M, we define two 1-forms ω^{V} and ω^{C} in T(M) in such a way that $\omega^{V}(X^{C})=\omega(X)^{V}$ and $\omega^{C}(X^{C})=\omega(X)^{C}$, X being an arbitrary vector field in M. We call X^{V} and X^{C} the vertical and the complete lifts of X, respectively. The following formulas are easily verified:

(1)
$$(fg)^{V} = f^{V}g^{V}, \qquad (fg)^{C} = f^{C}g^{V} + f^{V}g^{C},$$

$$(fX)^{V} = f^{V}X^{V} \qquad (fX)^{C} = f^{C}X^{V} + f^{V}X^{C},$$

$$(f\omega)^{V} = f^{V}\omega^{V}, \qquad (f\omega)^{C} = f^{C}\omega^{V} + f^{V}\omega^{C},$$

where f, g are arbitrary functions, X an arbitrary vector field and ω an arbitrary 1-form, all in M. Taking account of formulas (1), we can define inductively the vertical lift T^v and the complete lift T^c of a tensor field T of arbitrary type in M by using the following formulas:

^{1.} Abstract of an adress delivered at Seoul Nation! University, September 28, 1972.

(2)
$$(S \otimes T)^{v} = S^{v} \otimes T^{v}, \qquad (S \otimes T)^{c} = S^{c} \otimes T^{v} + S^{v} \otimes T^{c}$$

$$(S+T)^{v} = S^{v} + T^{v}, \qquad (S+T)^{c} = S^{c} + T^{c}$$

for any tensor fields S and T in M.

Given a pseudo-Riemannian metric g in M. Then its complete lift g^c is a pseudo-Riemannian metric in T(M) with n positive and n negative signs, where dim M=n. If F is an almost complex structure in M, then its complete lift F^c is also an almost complex structure in T(M). The almost complex structure F^c in T(M) is integrable if and only if the almost complex structure is so in M.

Let ∇ be an affine connection in M. Then there is a unique affine connection ∇^* in T(M) satisfying $\nabla^*_{X^C}Y^C = (\nabla_X Y)^C$ for any vector field X and Y in M. We call ∇^* the lift of ∇ to T(M). The curvature tensor R^* and the torsion tensor T^* of ∇^* coincide with the complete lifts R^C and T^C respectively, where R and T denote respectively the curvature and the torsion tensors of ∇ . For any tensor field T, we have the formula

Thus, $abla^*$ is the Levi-Civita's connection in the pseudo-Riemannian manifold $(T(M), g^c)$, if abla is the Levi-Civita's connection of a pseudo-Riemannian metric g in M. Taking account of (3), we have $abla^*R^* = (
abla^c R)^c$. Therfore the pseudo-Riemannian manifold $(T(M), g^c)$ is locally symmetric if the pseudo-Riemannian manifold (M, g) is so. (We can prove that $(T(M), g^c)$ is symmetric if (M, g) is so.)

Let G be a Lie group with group multiplication $\mu: G \times G \to G$. Then the differential mapping $d\mu: T(G \times G) \to T(G)$ of μ defines a group multiplication in T(M) if $T(G \times G)$ is naturally identified with $T(G) \times T(G)$. Then T(G) becomes a Lie group with group multiplication $d\mu: T(G) \times (T(G) \to T(G))$ and is called the tangent group to G. If X_1, \dots, X_r are vector fields in G which form a basis of the Lie algebra of G, then the lifts $X_1^V, \dots, X_r^V, X_1^C, \dots, X_r^C$ form a basis of the Lie algebra of the tangent group T(G).

If Φ is the holonomy group of an affine connection \mathcal{V} in M, then the tangent group $T(\Phi)$ to Φ is the holonomy group of the lift \mathcal{V}^* of \mathcal{V} to T(M).

Generalizing the arguments above, we can develope the theory of prolongation of G-structures to tangent bundles or those of higher order (Morimoto [1, 2, 3, 4, 5, 6] and Yano and Ishihara [9]).

References

- [1] A. Morimoto, Prolongations of G-structures to tangent bundles, Nagoya Math. J., 32(1968), 67-108.
- [2] _____, Prolongations of G-structures to tangent bundles of higher order, Nagoya Math. J., 38(1970), 153-179.
- [3] _____, Liftings of some type of tensor fields and connections to tangent bundles of p^V -velocities, Nagoya Math. J., 40(1970), 13-31.
- [4] _____, Prolongations of connections to tangent fibre bundles of higher order, Nagoya Math. J., 40(1970), 85-97.
- [5] _____, Lifting of tensor fields and connections to tangent bundles of higher order, Nagoya Math. J., 40(1970), 99-120.
- [6] _____, Prolongations of G-structure to tangent bundles of higher order, Nagoya Math. J., 38(1970), 153-179.
- [7] S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J., 10(1958), 338-364.
- [8] K. Yano and S. Kobayashi, Prolongation of tensor fields and connections to tangent bundles, I, II, III, J. Math. Soc. Japan, 18(1966), 144-210, 236-246, 19 (1967), 486-488.
- [9] K. Yano and S. Ishihara, Prolongation of tensor fields and connections to tangent bundles of order 2, Ködai Math. Sem. Rep., 20(1968), 318-354.
- [10] ——, Differential geometry of tangent and cotangent bundle, Marcel Dekker, New York, to appear.

Tokyo Institute of Technology