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Recently, several authors [l], [2J, [3J, [7J have studied quaternion Kiihler

manifolds and proved interesting results. A quaternion Kiihler manifold is,

hy definition, a Riemannian manifold whose holonomy group is a subgroup of

Sp(m)·Sp(l), where Sp(m)·Sp(l)=Sp(m)xSp(l)/{+I}. On the other hand,

there is an induced quaternion Kiihler structure in the base space of a fibred

Riemannian space with Sasakian 3-structure (normal contact metric 3-struc­

ture) (See [4J, [6J). There is another definition of such a manifold, which is

directly analogous to that of a Kiihler manifold. The latter definition is much

more convenient to use in studying quaternion Kiihler manifolds hy using

ensor calculus (See [6J). Following the second definition, a quaternion Kiihler

manifold is a Riemannian manifold (M, g) satisfying the following conditions

(a) and (h):

(a) There is a subhundle V of the bundle of all tensors of type (I, 1) in

M. In any coordinate neighborhood U of M, there is a local base {F, G, H}

of the bundle V satisfying

(1) F2=G2=H2=-I,

GH=-HG=F. HF=-FH=G. FG=-GF=H,

where I denotes the unit tensor field of type (1, 1) in M.

(h) Let {F, G, H} be a local base of V, which satifies (1). Then we have

in U
VxF= r(X)G-q(X)H,

(2) VxG=-r(X)F +p(X)H,

VxH= q(X)F-p(X)G,

for any vector field X in M, where V denotes the Riemannian connection of

(M, g) and p, q, r certain local I-forms in U.

The condition (2) is equivalent to the condition that, for any cross-section

rp of V, Vx!p is also a cross-section of V for any vector field X in M. A

quaternion Kiihler mariilold is necessarily of dimension 4m(m>1) and orien-
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table. We can prove, using tensor calculus, some theorems and most of

results obtained in Cl], [2J, [3J and [7J.

References

[lJ D. V. Alekseevskii. Riemannian spaces with exceptional holonomy groups, Funk­

tsional'nyi Analiz i Ego Prilozheniza, 2(1968), 1-10.

[2J , Compact quaternion spaces, Funktsional'nyi Analiz i Ego Prilozheniza,

2(1968). 11-20.

[3J A. Groy. A note of manifolds whose holonomy group is a subgroup of Sp(n) .Sp(l).

Michigan Math. ] .• (1969), 125-128.

[4J S. Ishihara, Quaternion Kiihlerian manifolds and Fibred Riemannian spaces with

Sasakian 3-structure, to appear in Kodai Math. Sem. Rep.

[5J ,. Notes on Quaternion Kiihlerian manifolds, to appear in]. Diff. Geo.

[6j S. Ishihara and M. Konishi, Fibred Riemannian spaces with Sasakian 3-structure,

Differential Geometry. in honor of K. Yano. Kinokuniya. Tokyo, 1972.

179-194.

[7J V. Y. Kraines. Topology of quaternionic manifolds. Trans. Amer. Math. Soc., 122
(1966). 357-367.

Tokyo Institute of Technology




