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STRUCTURE OF DOOR SPACES

]EHPILL KIM

1. Introduction

This note is a presentation of structure theory for door spaces, i. e., spaces

in which every subset is either open or closed. We visualize open

subsets of a door space by proving that a space X is a minimal door space

if and only if either (1) nonempty closed subsets of X form a fixed ultrafilter

on X, or (2) nonempty open subsets of X form an ultrafilter (fixed or free)

on X. It is an immediate consequence of this result that a door space is

minimal exactly when it is connected. For the maximal case, this latter

characterization has a counterpart: a Hausdorff door space is maximal if and

only if it is extremally disconnected. Finally, assuming the continum hypo­

thesis, we construct a nonmaximal Hausdorff door space of cardinality of the

continuum that can be imbedded in the Stone-Cech compactification, f3D, of

any infinite discrete space D. This is interesting because maximality of X

agrees with imbeddability in f3D for infinite discrete D if X is a nontriviaI

Hausdorff door space of denumerable cardinality.

For terminology and notation, we follow [2J. Thus, by a door topology

for a set X, we mean a topology with which X becomes a door space. A

space X is minimal or maximal door space if its topology is minimal or

maximal among nontrivial (=not discrete) door topologies for X. As in [2J,

the word "point" will have double senses so as to mean a set with one point

as well, and p will stand for {p} if P is a point of X.

2. Structure of minimal door spaces

We begin by listing some lemmas, the first of which is of trivial nature.

LEMMA 1. Every subspace of a door space is a door space.

LEMMA 2. If a door space is expressed as the union of two disjoint open
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sets, at least one of them is discrete.

Proof. Let X be a door space which is the disjoint union of open subsets

A and B. H A is not discrete, then it has a point p that fails to be open.

For any subset C of B,. the set p U C can not be open for otherwise p would

be open in X. Accordingy, p U C is closed in X and C must be closed in

B. That is, every subset of B is closed in B implying that B must be

discrete.

LEMMA 3. If a point p of a door space X is not open, then eveery neigh­

borhood as well as every deleted neighborhood of p is open.

Proof. Let U be an arbitrary neighborhood of p. Since p is interior to

U, it is enough for our purpose to prove that U- P is open. To this end,

suppose that U- P not open. Since X - (U- p) = (X- U) U P must be open

in this case, we are led to the contradiction that p= U n ((X- U) Up)
should be open. This completes the proof of Lemma 3.

LEMMA 4. Let X be a door space and let p be a point of X that fails to

be open. If deleted neighborhoods of p do not form an ultrafilter on X-p,

then X- P is an an open discrete subspace of X.

Proof. Express X-p as the union of disjoint sets A and B non of which

is a deleted neighborhood of p. This is possible because the filter of deleted

neighborhoods of p is not maximaL In this case, neither A nor B can be
closed in X for otherwise at least one of A and B would be a delected neigh­

borhood of p. That is, both A and B are open in X. By Lemma I, A UB
is a door space and, by Lemma 2, at least one of A and B, say A, is

discrete. In order to prove that B is also discrete, let C be any subset of B.

Since p must be in the closure of A, A UC can not be closed, i. e., A UC is

Dpen in X. Thus C=Bn (AUC) is open, and B is discrete. We have proved

Lemma 4.

We are now ready to state and prove the proposed structure theorem for

minimal door spaces:

THEOREM 1. A space X is a minimal door space if and only if it satisfies

one of the following conditions:

(1) nonempty closed subsets of X form a fixed ultrafilter. on X, or
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(2) nonempty open subsets of X form an ultrafilter on X.

Proof. For the if part, let A be any subset of X. Since either of the

conditions (1) and (2) implies that exactly one of A and X-A is open, X

is a door space. This also proves that X is a minimal door space because the

definition of a door space merely requires that at least one of A and X-A

is open. To be precise, let X' denote the set X epuipped with a topology

properly weaker than the one originally given for X, and let A be an open

subset of X that is not open in X'. If A is closed in X', then X-A would

be open in X, a patent impossibility. Thus, X' is not a door space, that is,

X is a minimal door space.

Conversely, suppose that X is a minimal door space and let p be a point

of X that is not open in X. Our argument will be divided into two comple­

mentary cases, the first of which is the case when the deleted neighborhoods

filter of p is not maximal in X - p.

Case 1. If deleted neighborhoods of p fail to form an ultrafilter on X - p,

every subset of X - P is open by Lemma 4. They are the only proper open

subsets of X since X together with all subsets of X - P already form a door

topology for the set X. Thus, nonempty closed subsets of X are exactly those

subsets of X containing the point p, and they do form a fixed ultrafilter on

X.

Case 2. If deleted neighborhoods of p form an ultrafilter on X- p, then

all these deleted neigborhoods as well as all neighborhoods of p form an

ultrafilter on X. By Lemma 3, all members of the latter filter. are open.

Because these sets together with the empty set make X into a door space,

minimality of X implies that they are the only nonempty open subsets of X.

REMARK. Minimal door space can occur only if X has at least two points.

Note also that a minimal door space is a Tcspace if and only if nonempty

open subsets form a free ultrafilter, in which case X must have infinitely

many points.

Suppose that a space X is the union of disjoint nonempty subsets A and B.

lf X is connected then at most one of A, B can be open, while if X is a

door space then at least one of A, B must be open. Accordingly, a connected
door space is necessarily a minimal door space as shown by Y. Kim [2J.

Theorem 1 provides us with a straightforward proof of the converse of this
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result. Namely, if X is a minimal door space then either nonempty open

subsets form a filter on X or nonempty closed subsets form a filter on X.

Hence, X is not the union of two nonempty disjoint subsets both open or

both closed in X. We have proved

THEOREM 2. A door space is a minimal door space if and only if it is

connected.

3. Structure of general door spaces

Let X be a door space and let A be a subset of X that is open but not

closed in X. If a topology for X weaker than the one originally given to X

forces A to be nonopen, then neither A nor X-A can be open relative to

the weaker topology. Since this implies that A must be open relative to any

door topology comparable with the original topology of X, we see that the

intersection of any chain of door topologies for the set X is again a door

topology. Thus, by Zom's lemma, we have the following result.

LEMMA 5. Every door topology for a nondegenerate set X contains a

minimal door topology for X.

Roughly speaking, this lemma tells us that any door space can be obtained

from a minimal door space by assigning more open sets to it. At this stage,

it will be convenient to describe the types of minimal door spaces in more

familiar fashion. The first is the case when condition (1) of Theorem 1 is

valid, while the second case of Theorem 1 reduces into two subcases according

to as the filter of nonempty open sets is fixed or free. Namely, there are

following types of minimal door space X:

(1) there is a point p of X such that a proper subset of X is open if and

only if it does not contain p,

(2) there is a point q of X such that a nonempty subset of X is open if

and only if it contains q,

(3) nonempty open subsets of X form a free ultrafilter <11.

We shall denote by (X,p), (X, (q» and (X,f/) the door spaces of types

(1), (2) and (3) described above. It is clear that, for any pair of points p

and p' in X, any bijection of X to itself carrying p to p' is a homeomor­

phism Iiletween (X, p) and (X, pI) . That is, upto homeomorphism, minimal
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door space structure of type (X, p) is unique on X. Similarly, topological

type of (X, (q)) is independent from the choice of q. Except for these two
t

types, all minimal door spaces are T1-spaces: there are enough types of such

spaces as shown in [2J.

If X and X' are spaces with the same underlying set, we say that X

refines X' whenever the topology of X is finer than that of X'. In order to

classify the types of door spaces, we must look for open sets in spaces refining

a minimal door space. For spaces X refining (X, p), we do this in the fol.

lowing way. Except for the trivial case where X is discrete, X has a unique

point that is closed but not open, namely, the point p. Since all other points

are open, topology of X is completely determined by the filter lJ! consisting

of all deleted neighborhoods of p. If lJ! is a free filter, then X is Hausdorff.

If lJ! is not free, the intersection Y of all neighborhoods of p has at least

two points. It is immediate that Y is a minimal door space (Y, p), and X

can not be a T1-space. One also easily verifies that X- Y is discrete and

open, while (X- Y) UP is a nontrivial Hausdorff door space with base point

p. Here, of course, "nontrivial" means "not discrete". Thus, if X is not

Hausdorff but refines (X, p) properly, then either it is the free union of the

minimal door space (Y, p) with the discrete space X - Y or it can be obtained

by identifying the base points of the minimal door space (Y, p) and the

Hausdorff door space (X- Y) U p. Note, finally, that a space X refining

(X,p) is maximal if and only if the deleted neighborhoods filter lJ! is maxi­

mal. In case lJ! is a free ultrafilter on X - p, X is essentially a subspace of

(3 (X- p) by the Gelfand.KoIrnogoroff theorem [1]. If lJ! is fixed, there is a

point q(=I=p) such that a nonempty subset of X is open if and only if it

contains q or is contained in X - p. If, in addition, X has more than two

points, then of course X is the free union of a discrete space with the minimal

door space Y={p,q} of type (Y,p)=(Y, (q)). It seems that this type of

space3 e3caped from the attention of Yewky Kim [2J. Despite his errornous

remarks about the maximal case, however, all his formally stated results are

correct except that X should be assumed to be Hausdorff in the corollary to

his Theorem 6.

Now let X be a space refining X' which is of type (X, (q)) or (X, (/J). If

an open subset A of X is not open in X', every superset of X-A is open



26 Jehpill Kim

in X' because nonempty open subsets of X' form a filter. Thus every subset

of A is open in X and, in particular, "each point of A is open. Therefore,

if we let Y denote the union of all open subsets of X that are not open in

X', then Y is a discrete subspace of X. If X' is of type (X, (q)), then X

is either a discrete space or the free union of the dicrete space Y with the

minimal door space (X- Y, (q)) according to whether Y= X -q or not. Of

course, X can not be a Tl-space unless it is discrete. Note also that X is a

maximal door space if and only if X- Y has exactly one point p other than

q, in which case X refines (X, p) as well. For the only remaining case where

X refines (X, (/), we observe that X- Y is either open or a discrete subset

of X without interior. If X- Y is open, either X= Y is discrete or X- Y is

minimal of type (X- Y, (/)') where (/)' is the free ultrafilter on X- Y consis­

ting of those members of (/) failing to meet Y. If X- Y is not open, members

of (/) contained in Y form a free ultrafilter (/)' on Y. Accordingly, for each

point p of X- Y, YUp is a maximal Hausdorff door space whose topological

type does not depend on the choice of p. Note that X is maximal exactly

when X- Y has only one point p, in which case X is a Hausdorff space

refinining (X, p). Otherwise, X is T1 but not Hausdorff.

Summerizing, since every topology finer than a door topology IS again a

door topology, we have

THEOREM 3. Every Hausdorff door space X with base point p can be

obtained from the minimal door space (X, p) by assigning a free filter on

X - P to serve as the system of deleted open neighborhoods of p. Moreover,

X is a maximal door space if and only if this filter is an ultrafilter.

THEOREM 4. If a door space X is not Hausdorff, then either

(1) X is a minimal door space, or

(2) X is the free union of a discrete space with a minimal door space, or

(3) X contains a Hausdorff door space Y with base point p such that X-

(Y-p) is minimal of type (X-(Y-p), p), or

(4) X contains a maximal Hausdorff door space Y with base point p such

that X - Y is a non-open discrete set with at least one point and, for each

point q of x- Y, there is a homeomorphism of Yonto (Y-p) U q leaving

y - p pointwise fixed.

The space X is a maximal door space if it has just two points or the mini-
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mal door space part has just two points in the second of above cases.
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Once these results are obtained, one can make many remarks concerning

door spaces. Here, we list a few of them.

COROLLARY 1. A door space is a minimal door space if and only if it does

not have a point that is both open and closed.

This, of course, we could have established earlier by using Lemma 2 and

Theorem 2.

COROLLARY 2. If X is a finite set with n POints, n>l, there are 2n-2

inequivalent door topologies on X.

To see that this is the case, observe that if one picks k points of X, k>1,

he has determined one or two types of nontrivial door topologies on X

according to whehter k=2 or not.

4. Maximal door spaces

In this section, we look for properties of spaces discriminating maximal

ones among door spaces. One of such criteria for door space X with more

than two points is that X is maximal or not according to whether X refines

exactly two or one minimal door space. If X is a non-Hausdorff door space

with more than one point, this is the same as saying that all but just two

of the points of X are simultaneously open and closed. For Hausdorff case,

we have the following counterpart of Theorem 2-

THEOREM 5. A Hausdorff door space X with base point p is a maximal

door space if and only if it is extremally disconnected.

The reader may recall here that a space X is extremally disconnected if

every open subset of X has closure open in X.

Proof. Suppose that X is maximal and let U be any open subset of X. If

U is not closed, it must have UU p as closure. Since X- U can not be open

but contains p, it follows that (X-p) - U is not a deleted neighborhood of

p by Lemma 3. Because deleted neighborhoods of p must form an ultrafilter

on X - p, we see that UU p is a neighborhood of p, which is open again

by Lemma 3. Conversely, if X is not maximal, there is a subset U of X-p

such that none of U, (X- p) - U is a deleted neighborhood of p. Since X -
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V can not he open in this case, V has VUp as closure. However, VUp is

not open because l' is not an interior point of it. Since U is open as it
misses p, this completes the proof.

For spaces with countably many points, we also have

THEOREM 6. If X is a nontrivial Hausdorff door space of denumerable

cardinality whose base point is designated by 1', then X is a maximal door

space exactly when it can be imbedded in (3D for some infinite discrete space

D.

Proof. The "only if" part is almost trivial because X imheds in (3(X-p)

whenever X is maximal Hausdorff; this is true even without any restriction
imposed on the cardinality of X (see [2J for detail). If, conversely, X is

imhedded in {3D as subspace, then X-pis clossed in DU (X- 1'). But DU

(X-p) is normal because denumerability of X implies that every open cover

of DU (X-1') can be refined by Il-locally finite ones. Accordingly, X -1' has

closure (3(X-p) in (3D=(3(DU (X-p». It follows from this that deleted

neighborhoods of l' in X form a free ultrafilter on X-p as the point p must

be in {3 (X- 1') - (X- 1'). This completes the proof of Theorem 6.

Unfortunately, this result is no longer valid for higher cardinalities if the

continuum hypothesis is true. We demonstrate this in the following counter

example.

EXAMPLE. Let N be the discrete space of natural numbers and let l' be a

P-point of {3N-N. By this, we of course mean that every G.-suhset of {3N

- N is a neighborhood in f3N - N of 1'. As in [lJ, (3N- N has a dense suhset

of P-points if the continuum hypothesis is true. Again if the continuum hy­

pothesis is true, we may choose open sets V" indexed by countable ordinals

a to form a local basis at p. Since l' is a P-point, we may also suppose that

this basis is nested. Pick a P-point x" from each V" and let X denote the

subspace of {3N- N consisting of the points x" and p. Since a<r implies X r

EO U", each neighborhood of p must contain all but a countable number of

points x". Therefore, deleted neighborhoods in X of p fails to form an ultra­

filter since there are uncountably many points x". To prove that X is a door

space, observe that each point x" has a compact neighborhood V in fJN - p.

Since V contains at most countably many point of X while x" is a P-point

of {3N-N, it follows that x" is open in X. We have shown that the subspace
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X of {3N is a Hausdorff door space with base point p. Nevertheless, it is not

a maximal door space as we have seen that the deleted neighborhoods filter

of p is not maximaL
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