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A NOTE ON SUBALGEBRAS OF C* (N)
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1. Introduction

Let X be a compact Hausdorff space. The present article starts by observing

that there is a natural one to one correspondence between upper semicontinuous

decompositions of the space X and closed subrings of the function ring C* (X)

which contains all constant functions. Using this fact, we construct explicit

examples of function rings on the n-sphere to show that monotone union or

intersection of isomorphic rings need not be isomorphic with given ones.

Interpretation of these examples as subalgebras of products of real fields may

be of some interest. Infinite (complete) products of reals are discriminated

from finite products by the fact that they do not enjoy the monotone union

property or weak monotone intersection property on isomorphic subalgebras.

2. Definitions and notation

Before embarking the results, we must recall some definitions that will be

of frequent use throughout this paper. If X is a completely regular Hasudorff

space, C* (X) will denote as usual the ring of bounded continuous real func­

tions on X metrlzed by means of the uniform norm Ilfll=suplf(x) I. An

analytic subring is a closed subring A of C* eX) such that all constant functions

belong to A and pEA implies fEA.

Let X and Y be spaces and let C be any collection of continuous maps

from X into Y. A stationary set of C is a subset of X on which every

function in C is constant. A stationary set which is not a proper subset of

any stationary set is called a mazimal stationary set. Evidently, every max­

imal stationary set is closed, and X is the sum of maximal stationary sets.

If G is a decomposition of a space X, X/G will denote the quotient space

of G. A decomposition G of a Hausdorff space X into compact sets is said

to be upper semicontinuous provided that, for each open subset U of X, the
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sum of members of G contained in V is open in X. G is Said to be monotone

if each member of G is connected.

We denot~ the Euclidean n-space by En. The n-sphere is the subspace {xE

p+1: IIxll=l} of pH, and is denoted by Sn.

3. Closed subrings of C* (X)

In this section, we state a result which, in fact, is equivalent with [1,

16E-2J. We decided, however, to include our own proof of it as we believed

that the point of view is somewhat different in the present case.

LEMMA 1. If a subring of C*(X) is isomorphic with C*(Y) for some space

Y, then it is a closed subring of c* (X).

This lemma follows from the fact that every isomorphism of C* (Y) into

C* (X) is norm preserving, and is an isometry from the complete metric space

C* ( Y) into the metric space C* (X) •

LEMMA 2. If C is a collection of continuous maps of a compact Hausdorff

space X into a Hausdorff space Y, then the collection G of maximal stationary

sets of C is an upper semicontinous decomPosition of x.

Proof. Obviously, union of any two overlapping stationary sets of C is

again a stationary set of C, and G is a decomposition of X. Hence, we need

only prove that the quotient space X/G is a Hausdorff space by virtue of [2,

Theorem 3-31]. To this end, let p(x) and p(y) be distinct points of X/G.

where x, yEX and p is the projection map of G. Since x and y must lie in

distinct members of G, there is a function fin C withf(x)=/=f(y). Let V

and V be disjoint open neighborhoods of f(x) and f(y) , respectively. Since

f must be stationary on all members of G, each of the sets f- 1(V), f- 1 (V)

is an inverse image under the projection p of a subset of X/G. This then

implies that pf-1(V) and pf-l(V) are disjoint open sets containing p(x) and

p(y), respectively, because /-l(V) and f- 1(V) are open in X by continuity

of f. We have completed the proof of Lemma 2.

The following is an alternate version of [1, 16E-2J.

PROPOSITION 1. Let X be a compact Hausdorff space. For each closed

subring A of C* (X), the maximal stationary sets of A form an upper semi­

continuous decomposition of G of X with C*(X/G) isomorphic to A and,
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conversely, for each upper semicontinuous decomposition G of X there is one

and only one closed subring A of C* ex) such that A contains all constant

functions in C* eX) and G is the collection of stationary sets of A. Moreover,

the closed subring A is analytic if and only if corresponding decomposition

G is monotone.

Proof. The direct part is a special case of Lemma 2. For the converse

part, observe that the ring A consisting of all functions in C* (X) which are

stationary on each member of G is a closed subring of C* eX) by Lemma 1

as each fEA is the composite g.p for one and only one gEC*eX/G), where

p denotes the projection map of X onto X/G. The Stone-Weierstrass theorem

then implies that A is the unique closed subring meeting the requirement of

the proposition. Finally, that G is monotone if and only if A is analytic is

immediate from [1, Theorem 16. 30 and Lemma 16. 31].

3. Examples of function rings on the n-sphere

The examples we present in this section will be subrings of C* (Sn) defined

by means of certain monotone decompositions of Sn. Our most fundamental

tool is the result that compact Hausdorff spaces X and Yare homemorphic if

and only if C* (X) and C* eY) are isomorphic. Beside this, we need the

following result.

PROPOSITIO" 2. Let K be a compact subset of a compact Hausdorff space

X. Then the collection consisting of components of K and points of X- K is

an upper semicontinuous decomposition of X.

This result is a consequence of the fact [2J that every component is a

quasicomponent in a compact Hausclorff space. In fact, let Ch Cz be distinct

components of K. Then K is the sum of two disjoint compact sets K l and

Kz with ClcKl and CzcKz. Since Kl and Kz must be completely seperated,

the decomposition has a Hausdorff quotient space.

THEOREM 1. There is a monotone decreasing sequence {Akl of closed subrings

of C* (Sn) , n>2, all isomorphic with C* eSn) such that n A k is not isomorphic

~ith C* (Sn) but contains a subring ~hich is isomorphic with C* (Sn).

Proof. Without loss of generality, we assume that the complex number plane

is a subspace of Sn by regarding Sn to be the one point compactification· of
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H1={XEVCS": IIxlI=l& largxl~/3},

H 2={xEVcS": IIxlI=l& largx-1l:I<1l:/3}.

For each positive integer m>1. let

H 2m_ 1={XEWCS": IIxlI=1-2-m & largx-1l:/21<1l:/4}.

H 2m={xEWcS": IIxlI=1-2-m & I argx-31l:/2!<1l:/4}.

For each k~l. let G" be the decomposition of S" into the sets Hi> ...• H"

and points not lying on any of HI> ... • H". and let A" denote the ring con­

sisting of all functions in C* (S") which are contant on each Hi. i<k. All G"

are upper semicontinuous by Proposition 2. and all S" /G" are homeomorphic

to S" by [3J. We have proved that all A" are isomorphic with C* (S").

Every function in nA" is easily seen to be constant on the unit circle.

Accordingly, each f in nA k is constant on the unit circle as well as on all

H" with k>3. On the other hand, the decomposition of S10 with unit circle

and the sets H". k>3, as nondegenerate elements is upper semicontinuous by

Proposition 2. Therefore, by Proposition 1, nA" consists of all functions in

C* (S1o) which are constant on the unit circle as well as on each Hk> k>3.

By [3J, it suffices to show that the unit circle has complement distinct from

En in order to prove that nA" fails to be isomorphic with C* (S1o). This fol­

lows. however, from [4, Corollary 4. 8. 14J.

Finally. each A,. contains the subring consisting of functions in C* (S,,)

which are constant on the unit disk in VcS". Since the corresponding

decomposition has quotient space homeomorphic with SIt by virtue of DJJ, this

subring is isomorphic with C*(S").

THEOREM 2. There is a fflOn8tone decreasing sequence {A,,} of 1lUItually

isomorphic subrings of C* (S"). n>2. such that all A" are not isomorphic

with C*(S") but nAi is isomurphic with C*(S").

Proof. For each positive integer k. let

H,,= {XEE"cS" : 2-"<lIxlI:S:l}.

and let G" be the decaD!ilpo&i.ticm of S" with H" as the only nondegenerate

element. and let A" be the riJ:J.g consisting of all functions in C* (S") which

are constant on H",. Of course. G" are upper semieontinuous -by Proposition

2. Moreover. the rings A. are all isomorphie because~ S"/G" is the one
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point compactification of disjoint sum of two homeomorphic copies of E".

However, non of the A k is isomorphic with C* (S") because H k is sent by

the projection map to a cut point of the quotient space S"ICk'

Clearly, nA k has the unit n-ball as the only nondegenerate maximal

stationary set, and it is clearly isomorphic with C* (S"). This completes the

proof of Theorem 2.

THEOREM 3. There is a monotone increasing sequence {Ak } of subrings of

C* (Sn), n>2, all isomQrphic with C* (S") such that UA k is not isomorphic

with C*(S").

Proof. Let, for each positive integer k, H k denote the set of points in En

c Sn with IIxll < Ilk. Also, let Ck be the decomposition of Sn having H k

as the only nondegenerate element, and let A k denote the ring consisting of

all functions in C* (Sn) which are constant on H k• All Gk are upper semi­

continus by Proposition 2, and all SniCk are homeomorphic to Sn. We have

proved that all A k are isormorphic with C* (S").

It only remains to prove that UA k fails to be isomorphic with C* (S").

Now, suppose that UA k is isomorphic to C* (Sn). Since UA k must be

closed by Lemma 1 in this case and each stationary set of UA k is a single

point, we have UAk =C*(Sn) by the Stone-Weierstrass theorem. This,

however, leads to the contradiction that each function in C* (Sn) is constant on

some neighborhood of the origin of E"cSn• The proof is completed.

5. Remarks on algebras over R

Let A be an algebra over a field F. We say that A has the monotone

intersection property (MIP) on isomorphic subalgebras provided that every

family of mutually isomorphic subalgebras of A totally ordered by inclusion

has intersection isomorphic with the subalgebras belong to the family in

question. Dually, A is said to have the monotone union property (MUP) on

isomorphic subalgebras if monotone union of mutually isomorpic subalgebras

of A is isomorphic with the summands. If A is finite dimensional over F, it

certainly satisfies both MIP and MUP on isomorphic subalgebras.

Trivially, the real field R is an algebra over R. The same is true for any

(complete direct) product of copies of R under the addition, ring multiplica­

tion and multiplication by reals defined coordinatewise. In case A is infinite
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dimensional, MIP is of little interest as monotone intersection of isomorphic

subalgebras may well have a zero ring as intersection. Instead, we are con­

cerned with the weak monotone intersection property (WMIP) on isomorphic

subalgebras: If L is a totally ordered family of subalgebras of A all containing,

and isomorphic to, a subalgebra B of A, the intersection of members of L

is isomorphic with B.

Our goal in this section is to point out that both WMIP and MUP on

isomorphic subalgebras fail to hold in infinite products of R. To do this,

we need the following result which is a straightforward consequence of

[1, Theorem 10. 3J.

LEMMA 3. If X is a compact metric space, then C* (X) is isomorphic with

a closed subrinq; of C*(N).

In the next theorem, "product" means complete direct product, and the

product algebra RN is identical with the function algebra C (N).

THEOREM 4. Any infinite product of R has neither MUP nor WMIP on

isomorphic subalgebras.

Proo/. Every infinite product of R contains a subalgebra isomorphic with

the function algebra C*(N), and we may regard C*(Sn), n>2, to be a

subalgebra of the product algebra. Theorem 3 then disproves MUP, while

Theorem 1. (or Theorem 2) denies \VMIP on isomorphic subalgebra.

REMARK. The proof that MUP fails in an infinite product of reals rested

on the fact that the union of the rings A k in Theorem 3 is not closed. One

might be tempted to assert that the union of an ascending sequence of iso­

morphic closed subrings of C* (Sn) has closure isomorphic with the rings in the

sequence. This, however, is far from being true. In fact, let A k, k>l,

denote the analytic subring whose nondegenerate maximal stationary sets are

the circle with radius Zl-k and the disk with radius 2-k, both centered at

the origin of WcSn• Obviously, the Ak are mutually isomorphic but their

union has closure C* (Sn), that is not isomorphic with A k•
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