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SOME ALGEBRAIC PROPERTIES OF A TOPOLOGICAL
SEMIFIELD R4
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The concept of topological semifields was first introduced by M. Antonovski,
V. Boltyanski, and T. Sarimakov [1] in 1960. It is quite useful for the
discussion of functional analysis. In this note we shall consider the special
type of topological semifields which is a Tichonov product of reals and
investigate some algebraic properties of this space.

Let A be an arbitrary set and let R* be the set of all real valued functions on
A. On R* we define + and - as follows: If f, g=R%, (f+g) (a)=f(a)+g(a)
and (f-g)(a)=f(a)g(a) forall a=RA. Let K be the set of all functions fin
RA such that f(a) >0 for every a=A. We can topologize R# by using axioms
in [1] and obtain a topological semifield. It is easy to see that its semifield
topology is equivalent to its product topology.

Let S be the set of all functions in R* which are not equal to zero on at
most a finite subset of A. Then § is a subring of the semifield R4, also an
ideal of R This subring, however, is not a semifield. On the other hand
the ring of integers is a subring of the semifield of reals, but not an ideal,
The question then arises as to which subrings of the semifield R# are ideals.

Let B be a subset of A. Then{f=R4: f(a)=0 for every a=A\B} is iso-
morphic to RE. Moreover it is an ideal in RA We are now ready to state

our results.

THEOREM 1. Let B be a subring of RA. Then B is an ideal of R* iff fB
is isomorphic to RN, Z(f) being the set of the zeros of f, for every
nonzero function of B.

Proof: Suppose that fB is isomorphic to R for every nonzero f<A.
Since RN is isomorphic to a semifield ideal of R4 contained in B, f-g<=
RN B for any g=RA Conversely, suppose that B is an ideal in R% and
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feB. Consider g=RA such that g(a)=0 for a=Z(f) and g(a)=1/f(a) for
a=A\Z(f). The function f-g belongs to B since B is an ideal If A<RA
and Z(f)=Z(h), then h=h-f-g and hA=fB. On the other hand, suppose
that k=fB. Then h=f-g for some g=B, but then h(z)=0 for every z in
Z(f). Hence fB is isomorphic to RANY,

THEOREM 2. Let B be a non-trivial ideal in RA. Then the following
“conditions are equivalent: (1) B is a principal ideal, (2) B has an identity,
(3) B is closed.

Proof: (1)—(2): Suppose that B is generarted by f. Consider g&=RA such
that g(a)=1/f(a) a=A\Z(f) and g(2)=0 for a=Z(f). The function f-g
is the characteristic function on A\Z(f) and belongs to B since B is an ideal.
(2)—(1): Let 7 be an identity in B. Then clearly i generates B.
(3)—(2): Let T={a=A: f(a)+*0 for some f=B}. Then y,, the charac-
teristic function on {a}, belongs to B for every a=T, furthermore s
belongs to B for every finite subset $ of 7. But then yr belongs to the
closure of {rs:S is a finite subset of 7}. Then, since B is closed, 1
belongs to B.

(2)—(3): We have shown that (1)<(2). Hence B=(xz) and Bis closed.

THEOREM 3. Let F be a ring homomorphism of RA into a topological ring
B. If F is continuous, then Ker F is a topological semifield ideal.

Proof: Ker F=F"1(0) is closed since F is continuous and Ker F is 2
semifield ideal by Theorem 2.
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