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Abstract

This paper deals with wave propagaticns in solid state electron plasmas from the
view point of treating the plasma as a conducting fluid, and especially consideration is
extended to the effect of diffusicn on the permittivities and dispersion relations. The

analysis is based on the conception of the self-consistent field approximation. It is
shown for the cases of the specific physical cenfigurations that the positions of the null
elements in the permittivity tensors are not affected by the diffusion terms, and the
diffusion effect appears only in the case of the space-charge wave. It is also shown that

the magnitude of the real part of wave vector is in proportion to the 3/2nds power of

the field in some regions.

1. INTRODUCTION

On analyzing the characteristics of wave
propagations in solid state electron plasmas, the
permittivities play a critical role as in dielectrics,
since the permittivities are especially closely
related with lattice vibrations, dispersion
relations and wave propagation velocities in the
media [1], [2], and calculating the permittivity
for an electron gas in solid state materials
subjected under the external excitations there
are several methods known as random phase
approximation, independent-pair approximation,
self-consistent field approximation, or time-depe-
ndent Hartree-Fock approximation.[31, [4].

In this paper discussion is based on the conce-

ption of the self-consistent field approximation,
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and the concept of plasma equivalent permittiv-
ities allows the collective interactions between
the charged particles and lattices to be described
in terms of a familiar electrical property using
a hydrodynamical model for the plasma, to be
rendered less difficult to analogize with that for
the solid state nonplasma materials, and to be
characterized the plasma as a dielectric medium.

It is of particular interest in the field of
electro-optics to investigate the properties of the
permittivities of materials to be utilized, and it
is furthermore one of the principal targets in
the current research to seek the plasmas which
possess a proper permittivity suitable for the
intended specific applications as fully discussed
by Crawford [5].

It is a great convenience in the consideration
of plasma waves to treat the plasma as a
dielectric medium with its circumference. The
presence of electrons in the plasma gives rise
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to a convection current, and this current must
be accounted for in the derivation of an equiv-
alent permittivity. When a magnetostatic field
is present, the plasma is anisotropic and the
plasma pzrmittivity is represented by a tensor.
Anisotropy in a plasma medium is due to the
fact that electrons orbit magneticfield lines in
one direction only and the plasma properties
cnter the wave equation only through the tensor
dielectric constant [6] and one tends to investi-
gate the tensor from a viewpoint of mathematical
symmetry transformations, because the latter
can be used to simplify and unify the results of
the problems concerned with the former [7].

In solids, because of the thermal vibrations of
the lattice, scattering is a very important part
of any problem. Aside from phonon scattering
of the carriers, there are Rutherford scattering
and scattering effect from neutral impurities
as well as faults. For dense semiconductor elect-
ron-hole plasmas electron-hole scattering also
must taken into consideration. For solids, the
value of the scattering frequency ranges about 10
1 to 10** sec™! as the temperature increases from
liquid Helium to the room temperature. And it
is usually necessary that to observe plasma-wave
phenomena in solids the relaxation time of the
charge carriers due to the above scatterings
must be made sufficiently large enough so that
the weve phenomena may not be damped out [4],
[8]. This requires the application of high purity
samples at low temperatures, and it is assumed
in this paper that the time is a constant [4],
because the devices which utilize the character-
istics of the plasmas operate in the constant
environment under the ordinary conditions and
the constituents of the duvices remain unchanged.
These assumptions simplify the problems to a
great deal.

With both finite temperature and scattering
in the solid there are diffusion effects whenever
the carriers are bunched. Since most of the
interesting interactions involve such bunching
[4], [8], diffusion can play a critical role in the
permittivity tensors, the dispersion relations,
etc. According to the classical binary collision

theory for a Lorentzian gas, the transverse
diffusion is proportional to the applied magnetic
field for ordinary magnetostatic fields, while
for very large magnetostatic fields the direct
diffusion is proportional to the inverse square
of the field (9], [10], and the diffusion will
give its influence on the tensors, the dispersion
relations and the wave propagation through the
media, and that kind of phenomena occurs in
solid state electron magnetoplasmas [4].

It is of fundamental importance, therefore, to
investigate the expressions of the permittivity
tensors, the dispersion relations and consequently’
the wave propagation through the solid state
electron magnetoplasmas when the diffusion
effect is taken into consideration, and these
problems are discussed in this paper to obtain
the general features of the mutual interrelations
between the plasmas and waves.

The propagation of waves in a plasma can be
described phenomenologically be solving Maxw-
ell’s equations with the Boltzmann equation
together, and in the analysis we will concentrate
only on the response of the electron gas assuming
that the motion of the ionized donors in semic-
onductors can be neglected. It is aslo assumed
herein that the medium is an infinite one,
monochromatic plane waves which have the
form of exp j (wt-%-7) propagate through in the
medium and general features of wave do not
depend on the details of the band structure [4],
[11]-[16], and rationalized MKS units are used
throughout the paper.

[I. THEORETICAL CONSIDERATIONS

Maxwell’s equations are
B

PRE=—"3 ay
PxE=7+22 @
p-B=0 &
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and in the microscopical description the source
terms J and pare related to the dynamical
motion of electrons as

Periy =2 3 [F —Fice] (5y
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The macroscopic equations of the hydrodynamic

Jn=

model are obtained from the microscopic Boltz-
mann equation [APP.A]

or=(55), ™

by taking moments of the velocity distribution.
The first moment of the Boltzmann equation (7)
using the Lorentz equation leads to the equation
of motion [APP. AJ:

“=9(E+oXB)—vo———p-P , (8
where 7 is the charge to the mass ratio of the
carrier and v the effective collision frequency
leading to momentum change and n and P are
the particle density and intrinsic pressure tensor,
respectively, and the latter is derived from the
random-walk theory and expressed, assuming the
pressure is isotropic because the plasma is
considered as a conducting fluid, as

m*nlvp®)
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where (v;H= is the average kinetic vel-
ocity of the particles of effective temperature
T and ks Boltzmann’s constant, and obtaining
Eq. (8 the small effect of the gravitational
gradient in making the vertical direction unique
is neglected [6], [17]—[20].

Because, in this problem, Maxwell’s equations
and the Boltzmann equation have constant
coefficients and construct a linear system, the
problem may be solved by taking Fourier
transforms in ¢ and », and the following basic

equations can be obtained:

& XE=jwpoH am
—jAXH=J+ jwek ' an
R-B=0 a2
—jk-D=p %))
i =nE+ X, +78X B4 j ’;ff P (14)
J=poU+ pie (15)
and
EJ=wp , (16)

where @,=3B, and Eq. (16) follows from Egs.
(11) and (13). Notice that we dropped { >sy
mbol in Eq. (14) for convenience.
Eqs. (10) to (16), the following operators are
used [21]:

In deriving

d _ 9

di ~ g TV an
d

JQ=—7+v (18)

And in IlO[c.tIOIl the subscript 0 refers to the
d. ¢. value and the higher order terms are
neglected because of its small magnitude.

The general equation for the wave propagation
through the plasma including the diffusion
effect can be obtained from Egs. (10) to (16)

[APP. B] as

1 Po
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@ BYD /L1 ngb (B-T)]) +5okayte
(b LR+ T o YD /11—
(+-D)1}=0 . (19)
where
Q=0 —0)

R=Q*E—w, (&, E)+ jQ(@w,X E)
S=0% -1, (.- £) + Q@ % §)
T=Q%—a, (@, #)
The Helmholtz equation can be written, from
the assumption of a perturbation in the form of
exp j(wt—%-7), as

ExExE+-2g E=0 , (20)

where ¢ and ¢ are the tensor relative p ermitt-
ivity and the velocity of light, respectively.
From Eq. (20) and its associated equation for

J, the following expression will be obtained:
¢-E= e,E+ -~ (oo +p70) ) @D

and using Eq. (11) vuth its related expression
for p, the above expression becomes

¢E=aB-—rp {*&’—[W'nR—i—k'r}S(ﬁo-E)
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where ¢ is the relative scalar permittivity of
the lattice. Expression (22)
expression by which the permittivity tensor can
be defined for the case where the diffusion

is the general

effect is taken into consideration.



If. DISCUSSION

A. Permittivity Tensors

To begin with the permittivity tensors in
which the diffusion effects are taken into cons-
ideration will be derived for the extreme cases
in its physical configuration.

For the case where the plasma is in the state

. . . d 0
of nonstreaming (in this case, 7=Tz)’ and

the wave vector and the magnetostatic field are
in the z and y directions, respectively, the
following permittivity tensor is obtained from
Expression (22):
«—BC 0  —jBD)

0 ¢—BF 0 ’
jBD 0 €—-BE

[
it
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where
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B=Zamr—an
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. k%v-ﬁw,"’Q‘
E=t o O —0.) 0 — Foy?07]
F=5(Q*— o) ,
and for the case where the wave vector and

D=y Q+

the magnetostatic field are in the z and x
directons, respectively, the permittivity tensor
can be expressed, following the same procedure
as applied to Expression (22) to derive Expression
(23), as
i ¢—BF 0 0
¢= 0 —BC jBD
t 0 —JjBD ¢,—BE

and for the case where both of the wave vector

@D

and the magnetostatic field are in the z direction,
the following permittivity tensor can be obtained:

€,—BC’ jBD’ 0
¢=| —jBD’ ¢—BC’ 0 , (25
0 0 ¢ —BF’
where
C'=9Q2
D' =50

Fevrlw,t(Q2—w,?)
0ol 3Qw — kPu*]
Next, for the case where the plasma is in the

Fr=p(Q*—w02)+

state of streaming and its direction of the
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uniform flow is in the z direction with the wave
vector and the magnetostatic field in the z and
y directions, respectively, the following permit-
tivity tensor is obtained from Expression (22):

e,—BC" 0 —jBD"
e=| 0 e—BF” 0 , (26)
7BDy’ 0 «—BE"

where
C’="2Q*(w—kvy)
w

" krevr2w,lw 2 Q% (w—kvy)
wpo[3Q(Q* —w.?) (w—kvy) —kPvr0?]
D =pw.Q

. vy’ w, 0 Q8
t o l3Q(Q7 —0.2) (w—kvy) — Fror?0H]
Dy’ =—-0.0(0—kvo)
+ 3kew, 20,0 (Q—0.2) (w—kvy)
0s[BQ (P —w2) (@ — kvo) —Fog207]
kv Q2
Sotr—ahae TV
E/I:vwz

3kew 2 (P —w o
T o3 — 0,7 (w—Fvg) — Foo 0]
ko 2Q
Csa@e—wnae teo)

Frr=—b (@ —02) (0—kvo) .

and for the case where the wave vector and
the field are in the z and x directions, respect-
ively, the tensor becomes as

e—BF" 0 0
§= 0 ¢—BC” jBD"” , @D
0 —JjBDy”" ¢, —BE"

and for the case where both of the vector and
the field are in the z direction, the following
result is obtained:

«¢—BC'" jBD’" 0
€=| —jBD""" ¢—BC" 0 (28)
0 0 &¢—BF" )

where

C' =L Q3 (0—twy)

D=L 0Q(0—kvy)

F"’:ﬂ(Qz—wﬁ) -+ (kvrz+3gvow)
kew,2(Q2—w,%)
o[ 3Q (0 —kve) — kivr?]
Observing Expressions (23) to (28) it is seen

that each expression constitutes a antisymme-
tric permittivity tensor (e;=-¢;: ixj) except
those of (26) and (27), and each matrix, which
is for the extreme case in its physical configu-

ration, has four null elements and comparing
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these matrices with the ones obtained from
Equations (B—3) and (B—4) [AFP.B], in which
the diffusion and/or the streaming terms are
neglected at the first place, they are similar in
the form of a matrix to each other.

Therefore, it can be seen that there is no
influence upon the matrix form, which expresses
the permittivity tensor, due to the diffusion
and/or the streaming terms, and as a result of
the above argument the 2nd terms of C, C”,
c, D, D7, Dy, D', E, E”, F’, F”, F” and
the 3rd term of Dy’can be regarded as pcrturb-
ation terms and the degree of its perturbation
on the permittivities depends upon the relative
magnitudes of variables and parameters, and
also it might be expected that these terms have
in{luence on the type of waves, which propagate
through in an solid atate electron plasma, since
the terms are, in general, complex quantities,
and on instabilities [22].

Expressions (23) and (24) are equivalent to
each other in their physical meanings as it can
be recognized by.comparing their corresponding
eigenvalues, but Expression (25) is quite different
from those two expressions in its physical reality,
even though it is equivalent to the other two
expressions in its mathematical form if one
disregards differences between the corresponding
terms in the matrices and pays only attention
to the number of null elements and its positions
in the matrices, and this is due to the fact that
Expression (25) is for the case of the longitudi-
nally applied field. The same arguments hold
good with the relations between Expressions
(26), (27) and (28), too.

The permittivity tensor has connection with

the conductivity tensor as
e=el+—2 , (29)

Jwéo
where ¢ is the conductivity tensor, and the

tensor (25) can be splitted as

100y (C'00 010
e=€|l010|(-B OC’OJ+jBD' —100
001 00 F 000
(30

In the absence of magnetic fields the transport
equation in the relaxation time approximation

— 39—

for a longitudinal phonon in a free-electron gas
is

“af +orf Py, f=— f;f“ s @D

where the symbol v is substituted for = for
convenience. From Eq. (31) with the definition
of the electric current density J, 7 is given by

7=g-<E+—%f~')+nec,R (32
with @ for the lacal lattice velocity, n the
perturbed electron density, ¢, the sound velocity
and R the diffusion vector, and the conductivity

tensor is

om= i | dt e - A
with ¢ for the wavevector of the phonon.
Solving Eq. (33) with the apprepriate equilibrivm
distribution function, i.e., in this case, Fermi
distribution fumction, for ¢ parallel to the z
axis, it will be obtained:

Oy =03, 70 (34)

0,70
and the off-diagonal terms are zero {3]. The-
refore, it can be inferred at least that, on the
analogy of the results of the forcgoing argument,.
the 3rd term on the right-hand side of Expression
(50), that is, the off-diagenal terms in the
permittivity tensor, denotes the anisotropic
properties cf the plasma arising from a result
of the existence of the applied magnetostatic
field, and this fact is more fully emphasized
(27) and (28) are
observed relating with those of the nonstreaming

when Expressions (26),

cases. The motion ¢f charged particles is in the
form of a helix with cycloiding around the
magnetostatic field lines when an electron plasma
is submerged in the magnetostatic field, and the
sense of the rotation of the particle is determined
by the Lorentz force equation. This is the origin
of Dy’ term which differs from D’ and this
fact exhibits a striking contrast with the nons-
treaming cases.

In Expression (30) the diffusion term is included
only in the 2nd term of the right-hand side of
the expression and, in this sense, the permittivity
tensor (25) is quite different frcm those of (23)
and (24) in its physical characteristics, and in
the latters the diffusion terms are in both of the



2nd and 3rd terms as perturbation. Therefore,
when the directions of the wave vector and the
magnetostatic field are same, the effect of diffu-
sion appears only in ¢, element and such a
mutual relation holds for in the streaming cases,
j.e., among Expressions (26), (27) and (28).

The above situation shows that the diffusion
effects occur only in the longitudinal direction
in the plasma when the field and the wave
vector are in the same direction whether the
plasma is in the state of streaming or not.

The Galilean transformation [23] is applicable
for nonrelativistic translations and the problems
«dealt herein are indeed in this case, since, e.g.,
the expression C can be obtained from the C’* by
simply replacing (w—wvot) by . Therefore, in
some plasma problems, the characteristics of
streaming states can be deduced from that of
nonstreaming states.

Substituting the tensor (39) into the constitu-
tive relation D=¢-E [14] it is obtained:

D=gE—(BC’ (£%-+99)+BF'st)k
—jBD'sXE (35)
and Expression (36) isan alternative statement
.of the constitutive relation for the tensor (30),
and the states and the degrees of perturbations
.are understandable in another representation
from the said expression.
‘B. Dispersion Relations

Next, using Equation (19),
relations in which the diffusion effects are
included can be derived. Because of the existence
of the intimate relation between a permitt.ivity
and a dispersion equation and from the results

the dispersion

of the foregoing symmetry considerations on the
permittivity tensors, consideration is only requ-
ired for the cases where the magnetostatic fields
are in the z and =z directions, respectively, when
the wave vector is in the = direction.

For the case where the plasma is in the state
of streaming, and its direction of the uniform
flow is in the =z direction with the wave vector
and the magnetostatic field in the =z and =z
directions, respectively, the following dispersion

equation is obtained from Equation (19):
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1+A—~BF*” 0 0
0 1+A—BC” jBD" |=0,
0 ~jBDy”’ 1-BE”
(36)
where
kz
A=~ m ,

and for the case where both of the vector
and the field are in the z direction, from the
same equation, the following result is obtained:

1+A—-BC jBD'” 0
—jBD" 1+A—-BC'" 0 =0.
] 0 0 1—-BF"

@7

The dispersion equations (36) and (37) indicate
that there exist three kinds of waves which
can propagate through in the plasma as far as
the specific physical models chosen are concer-
ned, and these are linearly and circularly
polarized and longitudinal electrokinetic plane
waves and these waves are the normal modes of
propagation in the medium. It is obvious from
the equations to see that there is no influences
on the characteristics of the propagation of the
linearly and the circularly polarized plane waves
due to the diffusion effect of the medium. For
the case where w-—kv,=0 the dispersion relations
for both the linearly and circularly polarized
plane waves become the one for transverse plane
waves in free space except for its difference in
permittivities and this fact shows partially the
validity of the expressions obtained, and the
validity will be more fully emphasized by the
numerical results of the computer calculations
comparing these results with the available
publications or by the analytical methods.

The solution of the dispersion equation may,
in general, yield growing, evanescent and deca-
ying waves. To distingish between these waves
which can be existed in an system the instabil-
ities of the system must be investigated. For
identifying an absolute instability, & function of
both time and space is taken as the source
function to the system. Then the responce of
the system can be written as 1

1
Ru,.)=W§CLSCFGW,»€““‘“"dkdw
(38>
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where C. is the Laplace contour and Cr the
Fourier one, and the inversion of the Green’s
function Ge,,» becomes D, t. For identifying
a convective instability a source function of
Jd(z)ef*t is taken and, in this case, the response

©f the system becomes as
Ci(w'-l’)

Rn,,)="‘('21—”)'z—§c,_chG<.,,nmdkdw ,
(39)
and the relation Dcy,57'=Gep,p» is still held.
“Therefore, as a result, the distinction between
the waves can be achieved by the investigation
.of the singularities of D¢, since the singula-
rities and the instabilities are closely related
with each other, and the types of the instabilities
«can be determined by the positions of the sing-
ularities in the contour planes, and as a conse-
quence of the foregoing results the types of
waves can be distinguished each c¢ther. For
example, one of the zeros of the dispersion
relation for the case of the linearly polarized
plane wave is expressed as
k=G+H-J/3 , (40)
where
GC=(K+(L+EK)VHV 5 H=(K—(L+K)1"*)1?
J=—(w—jl0w,) /v,
K=[9u0ve* {w'e~wpep— jl00, (e?e—pp)}
— 27 pevo*e (wPe—pop — j100w.€) +2(w?
—300ww,2— j10w, {30?— 100w} )] /5403
L =[3usv*(poy—w’) —w?+ 100w 2+ j200w,]
/9ve®
«C. Numerical Results
If a state of any medium is represented by the
function
Ui =Uexpjlot—Fk,-F) , 4n
then the surfaces of constant state are defined
by
wt—k, - F=K s (42)
where K is a constant, and the phase vclocity
with which these surfaces are propagated is
defined by Eq. (42). For the case where the
directions of the wave vector and displacement
are same, the phase velocity can be expressed

Aas
n=p . (43)

r

Next, if a state of any medium is represented

— 41 —
by the function
Uer,p=Voctpexpjlot—k,-F)dk, 44

then, if the range of values for & is small and
centered about some specific value kr,

kro—O0kr <krlkr,t+6kr , (45)
Eq. (44)may be replaced by
Oy kro-Gkr . _
@n={ Ty kexpj(wt—Fk,-7)dE, (46)
kry—Ckr

with
ow

o(kr) =w(krd) + ("B‘Er‘)kroakr

l '72‘()\ R
PL(B8), Ry, aD

If the expressions for %, and o are subsuituted
into Eq. (46), then, for the case where the dire-
ctions of the wave vector and displacement are
the same, the wave packet can be represented
by

Ciwyo=eXpilakpi—&,,3] ®a,0 , (48)
where
BrytGR, .
fcen=| Tournexpi(~3k.)
kro—0k,
90 1 ﬁ&)
r=—( 55 Jart 5 (TR a1k,

(49
If the total range of wave numbers is small,
so that for all ék,
2
then the planes of constant packet amplitude
are defined by

ow .
—(Fe s=K (50
where K is a constant, and the group velocity
can be expressed as

/0
) D

Since thce concept of the group velocity is
wholly preeise only when the wave packet is
composed of elementary waves lying within an
infinitely narrow region of the spectrum [24],
it seems that the result of the concept is quite
suitable in conformity with using in the discus-
sion. If the dispersion of a medium is normal, a
wave packet may travel a great distance without
appreciable diffusion, and since the energy is
presumed to be localized in the region occupied
by the field it is obvious that the velocity of
energy propagation must be approximately equal
to the group velocity. If, on the contrary, the
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dispersion is anomalous, the identity of group
velocity and energy velocity in the system
cannot be usually existed. Therefore, in the case
of normal dispersion, the velocity of energy
propagation is equivalent to the group velocity.
‘The above mentioned Expressions (43) and (51)
play an important role in discussing and analy-
zing the numerical results obtained graphically.
in the
discussion for the waves mentioned previously
I (In the Table, &, k..
and %, stand for the wave vectors of linearly

Some of the computer (results used

are given in Tables

and circularly polarized and longitudinal electr-
okinetic plane waves.) and [ for the case of
T~77°K and of the typical range of the other
parameters of the n-typz extrinsic semiconductors
The data for the circularly polarized plane waves
are those for the left-handed circularly polarized
plane waves (E,=E, (£—;9)). It is very clear to
see from Table [ that for both the linearly and

The Journal of the Korean Institute of Electrical Engineers Vol. 22 No. 3 May 1973

the circularly polarized plane waves the tendency
of the variation of the wave vector vs. the
angular frequency and applied field is quite
similar in both cases except for the magnitude
of each corresponding wave vector. (Notice some
of the data are not shown in Tables I and [
because of their great quantities.) These simila-
rlities in the variation stem from the fact that
the both waves are transverse ones. In the case
of the circularly polarized plane waves —g% is
infinite in the region of w=10° to 5.10"* and
show some deviation from an infinity e=10" up
to 10 for v,=0 and w.=0 as far as the data
show. Therefore, it shows that the dispersion
is an anomalous one in the region of w=10° to
5.10" and it becomes a normal dispersion above
this region, that is, a transition occurs. At v,=
0 and w.=10'? the dispersion digram for k, arc
nearly parabolic and the deviation from the

parabolic variation is due to collisions and

TABLE I
A PORTION OF DATA USED (2)

wc w kvr=1.7. 10 kvr=1.75. 10"
0.1E +02 0.1E +06 0.5482E +32+ j —0.1547E 4+ 27 —0.1600E +22+ j 0.1280E +33
0.1E +02 0.3E+06 0.5482E +32+ ) —0.1547E +27 —0.1600E +22+ ; 0.1280E +33
0.1E +02 0.1E +07 0.5482E +32+ j —0.1547E +27 —0.1600E +22+ j 0.1280E +33
0. 1E +02 0.3E +07 0.5482E +32+ j —0.1547E +27 —0.1600E +22+ ) 0.1280E +33
0.1E +02 0.1E +08 0.5482E +32+ j —0.1547E +27 0.4377E +27+ ; 0.1280E +33
0.1E +02 0.3E +08 0.5482E +32+ ) —0.1547F +27 0.4377E +27+ j 0.1280E +33
0.1E +02 0.1E +09 0.5482E +32+ j —0.1547E +27 0.4377E +27+ j 0.1280E +33
0.1E +02 0.1E -+09 0.5482E +32+ ; —0.9424E —01 --0.1600E +22+ ; 0. 1280E +33
0.1E +02 0.1E+10 0.5482E +32-+ j —0.1547E +27 —0.1600F +22+ ;0. 1280E +33
0.1E +02 0.3E +10 0.5482E +32+ j —0.1547E +27 —0. 1600E -+22-+ j 0.1280FE +33
0.1E +02 0.1E+11 0.5482E +32+ j —0.1547E +27 0.4377E +27+ j 0.1280E +33
0.1E +902 0.3E +11 0.5482F +32+ j —0.1547E +27 0.4377E +27+ j0.1280F +33
0.1E +02 0.1E +12 0.5482EF +32+ j —0. 1547E +27 0.4377E +27+ j 0.1280E +33
0.1E +02 0.3E +12 0.5482E +32+ j —0.1547E + 27 0.4377E +27+ j0.1280E +33
0.1E +02 0.1E +13 0.5482E +32+ j —0.1547E +27 -0.1600E +22+ j 0.1280E +33
0.1E 402 0.3E +13 0.5482E +32+ j —0.9424E —01 0.4377E +27+ j 0.1280F 433
0.1E +02 0.1E +14 0.5482F +32+ j —0.9424E —01 0.4377E +-27+ j 0.1280E +33
0.1E +02 0.3E +14 0.5482E +32+ j —0.1547E +27 —0.1600E +22+ j 0. 1280FE +33
0.1E 402 0.1E +15 0.5482E + 32+ j —0.1547E +27 —0.1600E +22-+ j0.1280F +33
0.1E +13 0.1E +06 0.5482F +32+ j —0.1547E +27 —0.1600F +22+ j 0.1280E +33
0.1E +13 0.3E 406 0.5482E +32+ j —0.1547E +27 —0.1600E +22+ j0.1280E +33
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[OF] @ kerey.7.0t kyr=1.75.10*
0.1E +13 0.1E +07 0.5482E +32+ j —0.1547F +27 —0.1600E +22+ j 0.1280F +33
0.1E +13 0.3E +07 0.5482E +32+ j —0.1547F +27 —0.1600E +22+ j 0.1280E +33
0.1E +13 0.1E 408 0.5482E +32+ j —0.1547E +27 0.4377E +27+ j0.1280F +33
0.1E +13 0.3E +08 0.5482E +32+ j —0.1547E +27 0.4377E +27+ j0.1280F +33
0.1E +13 0.1E +09 0.5482E 432+ j —0.1547F +27 0.4377E +27+ j0.1280E +33
0.1E +13 0.3E +09 0.5482E +32+ j —0.9424E +10 —0.1600F 427+ 30.1280FE +33
0.1E +13 0.1E +10 0.5482E +32+ j —0.1547F +27 —0.1600E +27+ j0.1280E + 33
0.1E +13 0.3E +10 0.5482E +32+ j —0.1547F +27 ~0.1600E +27+ j 0.1280E +33
0.1E+13 0.1E+11 0.5482E +32+ j —0.1547E +27 0.4377E+27+ ;0.1280E +33
0.1E+13 0.3E+11 0.5482E +32+ j —0.1547E +27 0.4377E+27+ j0.1280E +33
0.1E+13 0.1E-+12 0.5482E +32+ j —0.1547E +27 0.4377E+27+ j0.1280F +33
0.1E+13 0.3E+12 0.5482E +32+ j —0.1547E +27 0.4377E +27+ j0.1280F +33
0.1E-+13 0.1E+13 0.5482E +32+ j —0.1547E +27 —0.1600E +22+ j0.1280E +33
0.1E+13 0.3E+13 0.5482E +32+ j —0.9424E+10 0.4377E+27+ j 0.1280E +33
0.1E+13 0.1E+14 0.5482E +32+ j —0.9424E +10 0.4377E+27+ j0.1280E +33
0.1E+13 0.3E+14 0.5482F +32+ j —0.1547E + 27 —0.1600E +22+ j0.1280F + 33
0.1E+13 0.1E+15 0.5482E +32+ j —0.1547E +27 —0.1600E +22+ j 0.1280E +33
cases for the circularly polarized plane waves
the magnitude of %, is in proportion to the 3/2nds
10 power of the field intensity in the range of
10{ 0.=10° to 104 for ©,=10¢ and 10, and @=10° and
v e 10%2, respectively, (Fig. 2), and the dispersion is,
’ 1o in the same manner with those for the nonstre-
A 07 aming case, an anomalous one up to w=10" and
10:;" as further the frequency increases the dispersion
10 . I becomes a normal one.
I ;E‘ | b a ' lolsr
,107f w0 a
10°F 10r b
10°F 1010
]1‘; “_ L 10°
1671 10° 10* 102 10° 10* 10° 10° 107 s PR —_ . .
ke 10 10* 10° 10® 10°10'°10**10* 10*°10"®
Fig. 1. Dispersion diagrams for left-handed Magnetic field vs. wave _v‘cft;r

circularly polarized plane waves:

(a) v,=0,=0, (b) v,=0 and wc=10"
-applied fields, and the phase velocity becomes
very large for high frequencies in comparing
with those for the case of low frequencies, and,
in this case, the dispersion is a normal one, and
the direction of power flow is same as that of
wave propagation, i.e., the waves are positive-

«energy-carring waves (Fig. 1). In the strcaming

Fig. 2.
relations for left-handed circularly
polarized plane waves:
(a) V,=10* and w=108,

and w=10%

(b)y V,=10°

In the case of the longitudinal electrokinetic
plane waves there exist nonpropagating electro-
static waves as it can be seen from Table [ for
v,=0 and v;=0 (vr=0 is assumed to comparing
with the case of v;70), and all the waves are



characterized in their dispersive properties by

the anomalous dispersion when vr;=0 and v,30,

since d(/: is infinite everywhere. But it is
r

obvious that the waves are normally dispersive,
for example, for vy=10% v,=0 and wc=0, since,
in this example, the dispersion relation is expr-
essed graphically by the straight line. For vr=
105, »,=0 and oc=10" the relation is expressed
as a parabolic curve in the figure and the waves
are anomalously dispersive in lower frequency
regions and normally dispersive in the other
frequency regions (Fig.3). For »,=10% ©,%0 and
wc7#0 no variation of %, vs. the frequency is

10._
'
lwﬂ

a)mm-
1011- /
10% 7

i e

100t 1/ /

109 b

10‘ -

10 F

10°
10° [

4

10° 10* 10° 10° 10* 10° 10° 107 10* 10° 10

- Rr

Dispersion diagram for the longitudi-
nally polarized plane waves:

(a) v,=w.=0, (b) v,=0 and w.=10%
observed, and furthermore no variation of %,
can be observed when the applied ficld intensities
are varied, and this result seems to be a physi-
cally reasonable, since the result is for the
longitudinal electrokinetic plane waves. It is very
interesting to observe the transition region where
the characteristics of the variation of the wave
vector are quite different before and behind the
region. For streaming cases with »,=10* in the
dispersion relation, for example, %, is a constant
for 1.5 10¢<v;<<1.7-10%, whereas k; is a constant
for 1.95-10>vr>1.75-10* (Table 1), and the
numerical results suggest that the transitions
do not occur in the same manner as the above
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whenever the parameters are varied; As the
parameters indicate it seems that the origin of
the existence of the transition is due to the
thermal velocity of the charged particle and its.
environmental circumstances, i.e., lattice vibra-
tions. In the above example the phase velocity
of the wave are proportional to the angular
frequency in the region of 1.5:10¢<vp<<1.7-10%

For the nonstreaming cases the magnitude of
the imaginary part of the wave vector of the
circularly polarized plane wave shows no unifo-
rmity in its variation as the field and angular
frequency vary. On the other hand, however, for
the case of streaming (w,=10* and 10°) the
variation cannot be observed in the range of
w=]10° to 10", i.e., the magnitude of the imaginary
part shows a constant value and a deviation
from this value occurs at the higher angular
frequencies. It can also be observed that the
magnitude of the imaginary part increases in
proportion as the applied magnetic field does.
throughout the whole range of v,. For the case
of the longitidinal electrokinetic plane waves,
the magnitude of the imaginaly part varies
randomly in the dispersion diagram at v,=0 and
ve=10*and 10° At v,=10° and v,=0 the magnitude
slowly increases as the field strength increases,
but, on the contrary, the magnitude is a constant
at vy=10% This tendency of variation has no
more soundness at v,=10% The magnitude varies
nonuniformly throughout the whole regions.
indicated in Table I, but the magnitude is a
constant in the range of @=10°~10° regardless
of the variation of the field strength and incre-
ases proportionately with the field in the other

portions of the frequency ranges.

IV. SUMMARY AND CONCLUSIONS

The result of the general equation of wave
propagation through in the solid state electron.
plasma in which the diffusien effect are taken.
into consideration is applied to the specific
physical configurations of the streaming and
nonstreaming states of the plasmas, and the

permittivity tensors and dispersion relations are
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.obtained for the each case and compared analy-
tically with each other to see how the express-
ions and relations are affected by the effect of
diffusion, and for the specific values of the
parameters and variables the dispersion rclations
.are examined using the results of the computer
calculations and the following conclusions are
-obtained:

(a) In both the permittivity tensors and dispe-
rsion relations in their matrix and deteterminant
forms, the diffusion terms do not affect any
‘influences on the positions of the null elements;

(b) In some particular cases the expressions of
the magnitude of the off-diagonal terms are
different from cach other;
the diffusion
effect appears only in the case of the space-

(c) In the dispersion relation,

-charge wave so far:

(d) In the dispersion relations the normal and
.anomalous dispersions coexist in some cases;

(e} The magnitude of the real part of the wave
-vector is in proportion to the 3/2nds power of
the magnetic field in a certain range of the
field.

APPENDIX A
THE DERIVATION OF EQUATION (8)

Let f(7,a,t) drF da be the number of charged
«carriers having coordinates lying between 7 and
F+dr and velocities between @& and @#+da in
phase space. We normalize f (¥,4,¢) according
to

{7 anda=nc,n (A—1)
-where n(7,t) is the number density of the
<carriers in the plasma at 7 and z. The equation
for f can be written in the form

pr=(-2L) (A-2)
“with

DE%+Z‘L'%‘+%'”§{* ,

‘where F is the external force and m the mass
of the carrier.

On multiplying Eq. (A—2) by ¢, which is any
property associated with the carrier, and integ-
rating throughout the velocity-space, we have

§opr az=napy
where

nA(¢>ES¢(%)‘d12
and Eq. (A—3) can be rewritten after some
manipulations as

2 (0§ + e nigiy—n <2
o+ <ge __ait +a-< gqf > )_Sqﬁ( g{ )cdﬂ s

(A—3)

(A—4)

where

(o5 da=ny |

Let © be the mean velocity defined by

B00= g § 8 F
V the pecullar velocity

Viz'r—ﬁ,
then, making the specific stosszahlansatiz on

the right-hand side of Eq. (A—4), the equation
can be written as

L )t vt~V
B {<_>T/ A >+(a— ) ¢ AN
—< S5 7>  Lol=fe{ L - fo)}du,
(A—5)

where f, is the equilibrium distribution fune-
tion in the absence of the external perturbation

and z the relaxation time.
In the case of §=mV, Eq. (A—5) becomes
p-p-o(a—G)=—Ls (A=6)
where p=mn,
Eq. (A—6).

and Eq. (8) follows immediatly

APPENDIX B
THE DERIVATION OF EQUATION (19)

Substitution of Eq. (10) into the third term of
the right-hand side of Eq. (14) leads, aftcr scme
manipulations, to the following result:

JjQw.x5=7 "Z)f—izth—i- w,x (Txi,)

ke — N, VTR .z
+%—(v0-E) (w,xk) T-g%‘;"wcx]kp , (B=D
where W=w—F%+%, Similarly,
jQ@-ﬁ:p%w,-Ent%(ﬁo-E)(ﬁ:;-i)
¢ __U-pz 0.0 1E 3 —
T30y @ Jkp (B—2)



By recombining Egs. (14), (B—1) and (B—2),
the following result will be obtained;

JUQ =05 = (0 E+ jQ(XE)
— (@ BY (B0 ) (0 — (8- D),

jery 2
+ QD)+ (R (3, By

+Q(w,.xk)} R (B—3)
From Egs. (15) and (16)
p=—v1V‘lE (o) (B—4)

and Eq. (19) is obtained from Eqs. (10), (11),
15), (16), (B—3) and (B—4)
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