On the Feasibilty of Milled Sanders as a New Extender for Plywood Glue

합판접착제용(合板接着劑用) 미세목분증량제(微細木粉增量劑)에 관(關)한 연구(硏究)

  • Published : 1973.12.30

Abstract

This study was carried out to examine the characeristics of waste sanders(S)from. plywood and pre-finishing plywood surface sanding and double saw finishing, as a new extander in urea-formaldehyde resin(UFR) in plywood adhesive, and to focus, adhesive strength using the glue extended with milled sanders(MS) as extender, leveling the optimum amount of MS to be added, and examining the physical properties of glue extended MS & S. Also economical good feasibility of substitution for wheat flour(WF) with MS as a new extender is analyzed and presented in details. Selecting three standard samples of 80, 100 and 180 mesh, sorking them in distilled water at $20^{\circ}C$, 24 hours, redrying at $105^{\circ}C$ and rescreening the sample with standard screen, again, the 3 samples of 80, 100, and 180 mesh are passed 23 percent through 80 mesh sander standard sample 27 percent through on 100 mesh and only 10.9 percent through 180 mesh, respectively. The particle size of retained parts are greater in size of redried form. It seems undoubtly that particles to be extended in glue are got swollen and become greater in size and coarser in shape. The shape of fresh S particles are irregular thin needle with small scale, as shown in Figure 5. PFS are so finer than plywood S that only 9.8 percent of the S retained on 100 mest screen, 24. 30 percent on 100-160 mesh, and 65.9% on 160-180 mesh. But particle size of the fresh S is large enough to make the viscosity of glue direct extended with S too high to apply it glue spreader. The glue extended with milled sanders(MS). 3 hours milled PFS or 6 hours milled plywood S, having particle sizes shown in Tables 7 and 8, as ratio of Reain/MS/WF/water: 100/8/8/10, indicate good viscosity of 16 to 24 ps, as shown in Figure 5, for applying direct to glue spreader, have high tensile-shear strength (adhesive strength), 102.4 kp/$cm^2$, and 94 percent wood failure.

Keywords