Kyungpook Math. J. Volume 12, Number 2 December, 1972

INNER AUTOMORPHISMS AND SEMISTABLE AUTOMORPHISMS OF SOME SPLIT GROUP EXTENSIONS

By N.C. Hsu

O. Introduction

An automorphism of a group G which induces an automorphism on a normal subgroup A of G on the one hand and induces the identity automorphism on the factor group G/A on the other is called an *A*-semistable automorphism of G. The set of all *A*-semistable automorphisms of G forms the *A*-semistability group of G. We are interested in comparing the *A*-semistability group SS(G/A) of G with the inner automorphism group J(G) of G, where G is a split abelian extension of a cyclic group A. We record some general remarks which are modifications of a well-known result [1 : p. 106] in section 1, and examine as an application of general remarks every split cyclic extension of every cyclic group to show that for almost all extensions G of A of this kind $SS(G/A) \supseteq J(G)$ in section 2.

1. General Remarks

Let A be a group, written additively but not necessarily abelian, and let Π be

a group written multiplicatively. The split extension $G=(A,\Pi;\phi)$ with operators $\phi \in \text{Hom}(\Pi, \text{Aut}(A))$ consists of all pairs (a, x), where $a \in A$ and $x \in \Pi$, with the operation $(a, x)+(b, y)=(a+\phi(x)b, xy)$ written additively but not necessarily abelian.

Let A be abelian, and let Π be arbitrary. A ϕ -crossed homomorphism f of Π into A is a mapping of Π into A satisfying $f(xy)=f(x)+\phi(x)f(y)$. The set of all ϕ -crossed homomorphisms of Π into A forms an abelian group $Z^1(\Pi, A; \phi)$ under the composition (f+g)(x)=f(x)+g(x). A ϕ -principal crossed homomorphism f_a of Π into A defined by $a \in A$ is a mapping of Π into A satisfying $f_a(x)=\phi(x)a-a$. The set of all ϕ -principal crossed homomorphisms of Π into A forms a subgroup $B^1(\Pi, A; \phi)$ of $Z^1(\Pi, A; \phi)$. We define a homomorphism Φ of the centralizer $C(\phi(\Pi), \operatorname{Aut}(A))$ of $\phi(\Pi)$ in $\operatorname{Aut}(A)$ into the automorphism group $\operatorname{Aut}(Z^1(\Pi, A; \phi))$ of $Z^1(\Pi, A; \phi)$ by $[\Phi(\alpha)](f)=\alpha f$, i.e., the composite "f followed by α ," for

264 N.C.Hsu

 $\alpha \in C(\phi(\Pi), \operatorname{Aut}(A))$ and $f \in Z^1(\Pi, A; \phi)$, and then construct the split extension $(Z^1(\Pi, A; \phi), C(\phi(\Pi), \operatorname{Aut}(A)); \Phi)$ with operators $\Phi \in \operatorname{Hom}(C(\phi(\Pi), \operatorname{Aut}(A)), \operatorname{Aut}(Z^1(\Pi, A; \phi)))$. This is the group consisting of all pairs $[f, \alpha]$, where $f \in Z^1(\Pi, A; \phi)$ and $\alpha \in C(\phi(\Pi), \operatorname{Aut}(A))$, with the standard operation of a split extension. The A-semistability group SS(G/A) of $G = (A, \Pi; \phi)$ is isomorphic to this group under the mapping $\omega \to [f, \alpha]$ for $\omega \in SS(G/A)$ where α and f are determined by

 $\omega(a,1)=(\alpha(a),1)$ and $\omega(0,x)=(f(x),x)$. We shall identify ω with $[f,\alpha]$ in this way.

On the other hand, let A be arbitrary and let Π be abelian. Then the inner automorphism group J(G) of G is a subgroup of the A-semistability group SS(G/A) of G.

Now, let A and Π be both abelian. Then an A-semistable automorphism $[f, \alpha]$ of G is an inner automorphism of G if and only if $f \in B^1(\Pi, A; \phi)$ and $\alpha \in \phi(\Pi)$. Since α is already in the centralizer of $\phi(\Pi)$ in Aut(A), $\alpha \in \phi(\Pi)$ implies that α is in the center of $\phi(\Pi)$.

Finally, let A be cyclic and let Π be abelian. We combine the preceding remarks and record the result as

PROPOSITION (1.1). Let G be a split extension of a cyclic group A by an abelian group Π with operators $\phi \in \text{Hom}(\Pi, \text{Aut}(A))$. Let SS(G/A) and J(G) designate the A-semistability group of G and the inner automorphism group of G, respectively. Then

$SS(G/A) \approx (Z^1(\Pi, A; \phi), \operatorname{Aut}(A); \Phi)$

with operators

 $\Phi \in \operatorname{Hom} (\operatorname{Aut}(A), \operatorname{Aut}(Z^1(\Pi, A; \phi)))$

defined by $[\Phi(\alpha)]$ $(f) = \alpha f$ for $\alpha \in \operatorname{Aut}(A)$ and $f \in Z^1(\Pi, A; \phi)$, where αf is the composite of $f: \Pi \to A$ and $\alpha: A \to A$. Under this isomorphism, J(G) corresponds to $(B^1(\Pi, A; \phi), \phi(\Pi); \Phi')$ where Φ' is the appropriate restriction of Φ .

This is a modified form of Prop. 2.1. in [1; p.106].

2. Application

The order of a group H is written |H|. We wish to apply (1.1) to prove

PROPOSITION (2.1). Let G be a split extension of a cyclic group A by a cyclic group Π with operators $\phi \in \text{Hom}(\Pi, \text{Aut}(A))$. Then the inner automorphism group of G and the A-semistability group of G coincide if and only if one of the following

Inner Automorphisms and Semistable Automorphisms of Some Split Group Extensions 265 three cases takes place:

|A|=1, |A|=2 and $|\Pi|$ is odd, $|A|=p^e$, where p is an odd prime and $e\geq 1$, and ϕ is onto. In all other cases, the inner automorphism group of G is properly included in the A-semistability group of G.

We shall use $Z(\infty)$ and Z(n) to designate the additive group of integers and the additive group of integers modulo n, respectively.

LEMMA 1. Let
$$\phi$$
 be a homomorphism of a cyclic group Π onto $\operatorname{Aut}(Z(n))$.
If $n=2$ and $|\Pi|$ is even or infinite,
 $n=4$, or
 $n=2p^e$ where p is an odd prime and $e \ge 1$,
then $B^1(\Pi, Z(n); \phi)$ is a proper subgroup of $Z^1(\Pi, Z(n); \phi)$. On the other hand,
if

 $n=p^e$ where p is an odd prime and $e\geq 1$, then $B^1(\Pi, Z(n); \phi)=Z^1(\Pi, Z(n); \phi)$.

PROOF. Let *n* be one of the integers in the statement. If *t* is a generator of Π , there exists a primitive root *g* modulo *n* such that $[\phi(t)](a)=ga$ for all $a \in Z(n)$. For every $h \in Z(n)$, there exists a unique ${}_{h}f \in Z^{1}(\Pi, Z(n); \phi)$ such that

 $[h_{h}f](t) = h$. Furthermore, $h f \in B^{1}(\Pi, Z(n); \phi)$ if and only if $(g-1)x \equiv h \mod n$ has a solution $x \in Z(n)$.

LEMMA 2. Let ϕ be a homomorphism of a cyclic group Π onto $\operatorname{Aut}(Z(\infty))$. Then $B^1(\Pi, Z(\infty); \phi)$ is a subgroup of index 2 of $Z^1(\Pi, Z(\infty); \phi)$.

PROOF. If t is a generator of Π , then for every $h \in \mathbb{Z}(\infty)$ there exists a unique ${}_{h}f \in \mathbb{Z}^{1}(\Pi, \mathbb{Z}(\infty); \phi)$ such that $[{}_{h}f](t) = h$. Furthermore, ${}_{h}f \in B^{1}(\Pi, \mathbb{Z}(\infty); \phi)$ if and only if h is even.

We are now in a position to finish the

Proof of (2.1). Suppose that every A-semistable automorphism of G is inner. Then by (1.1) we have $Z^{1}(\Pi, A; \phi) = B^{1}(\Pi, A; \phi)$ and $\operatorname{Aut}(A) = \phi(\Pi)$, i.e., ϕ is onto. Hence $\operatorname{Aut}(A)$ is cyclic and therefore $A \approx Z(n)$ for some $n=1, 2, 4, 2p^{e}, p^{e}$ or ∞ , where p is an odd prime and $e \ge 1$. By Lemma 1 and Lemma 2, one of the

266

N.C.Hsu

three cases stated in (2.1) takes place. Conversely, if n=1 or if n=2 and $|\Pi|$ is odd, then obviously $Z^{1}(\Pi, Z(n); \phi) = B^{1}(\Pi, Z(n); \phi)$. If $n=p^{e}$, where p is an odd prime and $e \ge 1$, and ϕ is onto, then by Lemma 1, $Z^{1}(\Pi, Z(n); \phi) = B^{1}(\Pi, Z(n); \phi)$, whence every A-semistable automorphism of G is inner by (1.1).

Eastern Illinois University

Charleston, Illinois 61920

.

.

.

REFERENCE

[1] S. MacLane, Homology, Springer, Berlin, 1963.