Kyungpook Math. J. Volume 12, Number 2 December, 1972

ON AN INTEGRAL OF POWERS OF A SPIRALLIKE FUNCTION

By Y.J.Kim and E.P.Merkes

1. Introduction

Let S denote the class of analytic, univalent (one-to-one) functions f in $E = \{z : |z| < 1\}$ that are normalized by f(0)=0 and f'(0)=1. The set of spirallike functions S_p is the subclass of S consisting of functions f for which there exists a real β , $|\beta| < \pi/2$, such that $\operatorname{Re} \{e^{i\beta} z f'(z)/f(z)\} > 0$, $z \in E$. The starlike functions S^* is the subset of spirallike functions for which the constant β can be taken to be zero.

For $f \in S$ and for a complex number α , define

(1)
$$g_{\alpha}(z) = \int_{0}^{z} [f(\zeta)/\zeta]^{\alpha} d\zeta.$$

A number of papers have appeared ([2], [3], [6]) that determine choices of α such that $g_{\alpha} \in S$ whenever $f \in S$. It is not difficult to prove, by normal family arguments, that the set A of complex numbers α for which $g_{\alpha} \in S$ whenever $f \in S$ is closed. The determination of the boundary of A, however, or even other properties of the set A such as its connectedness, appear to be quite difficult. In this paper, we consider the set A_p of complex numbers α for which $g_{\alpha} \in S$ whenever $f \in S_p$ and determine two closed sets I_p and O_p such that $I_p \subset A_p \subset O_p$. These sets are improvements of results of Causey [2]. Clearly $A \subset A_p$.

2. The set O_p

Royster [7] established the following lemma for an analogous problem to the one treated here.

LEMMA 1. The function $g(z) = \exp[\mu \log(1+z)]$ is univalent in E if and only if $\mu \neq 0$ lies in one of the closed disks $|\mu+1| \leq 1$, $|\mu-1| \leq 1$.

The function g(z) in this lemma, after normalization and definition of the parameter μ , plays the role of the function g_{α} in (1) provided the integrand is suitably defined. In order to determine when this integrand is in S_{p} , we establish

250 Y.J. Kim and E.P. Merkes

.

the following result.

LEMMA 2. The function $f(z)=z \exp[\mu \log (1+z)]$ is univalent (and spirallike) in E if and only if $|\mu+1| \le 1$.

PROOF. Set

$$F(z) = \frac{zf'(z)}{f(z)} = \frac{1 + (1 + \mu)z}{1 + z}.$$

Case 1. $|\mu+1|>1$. In this case f'(z) has a zero at $z=-1/(\mu+1)$ which is in E. Hence f(z) is not univalent in E.

Case 2. $|\mu+1| < 1$. The linear fractional transformation w=F(z) maps the unit circle $U = \{z : |z|=1\}$ onto a straight line that has one and only one point in common with the real axis and this point is in the interval 0 < z < 1. Indeed, $F(-1) = \infty$ so F(U) is a straight line. The interior point 0 of E and the exterior point $-1/(\mu+1)$ of E are mapped by F respectively to 1 and 0. Therefore the line segment joining 0 and 1 in the w-plane must cross the line F(U). It follows that there is a real β , $|\beta| < \pi/2$, such that

$$\operatorname{Re}\left\{e^{i\beta} \frac{zf'(z)}{f(z)}\right\} = \operatorname{Re}\left\{e^{i\beta}F(z)\right\} > 0, \ z \in E.$$

Since this implies f is univalent [8], we conclude $f \in S_{p^*}$

Case 3. $|\mu+1|=1$, $\mu\neq 0$. The image of the unit circle U by w=F(z) is a straight line through the origin which, since F(0)=1, is not the real axis. We conclude, as in the previous case, that $f \in S_p$.

THEOREM 1. For each complex number α in $|\alpha| > 1/2$ there is a spirallike function f such that $g_{\alpha} \notin S$ where g_{α} is defined by (1).

PROOF. Let $f(z)=z \exp[\mu \log (1+z)]$ where $|\mu+1| \le 1$. By Lemma 2, $f \in S_p$ and, for complex α ,

(2)
$$g_{\alpha}(z) = \int_{0}^{z} \exp[\alpha \mu \log(1+\zeta)] d\zeta = \frac{1}{\alpha \mu + 1} \{\exp[(\alpha \mu + 1)\log(1+z) - 1\}\}$$

provided $\alpha \mu \neq -1$. The constants in (2) are immaterial as far as the univalence of g_{α} is concerned. Hence, by Lemma 1, g_{α} is univalent if and only if $\omega \neq -1$ and $|\omega| \leq 1$ or $|\omega+2| \leq 1$, where $\omega = \alpha \mu$. Now the disk $|\omega+\alpha| \leq |\alpha|$, which for $\alpha \neq 0$ is the same set as in the hypothesis $|\mu+1| \leq 1$, is contained in $|\omega| \leq 1$ if and only if $|\alpha| \leq 1/2$. For $|\alpha| > 1/2$, however, there is always a point in $|\omega+\alpha| \leq |\alpha|$ that is in the exterior of $|\omega+2| \leq 1$ and $|\omega| \leq 1$. This implies there is a choice of μ such that the function g_{α} in (1) is not univalent in *E*. If $\omega = -1$, then

On an Integral of Powers of a Spirallike Function 251

 $g_{\alpha} = \log(1+z)$ which is in S.

Causey [2] proved the special case of Theorem 1 for which α is real and $\alpha > 1/2.$

When $\mu = -2$ in Lemma 1, $f(z) = z/(1+z)^2$ in S^{*}. The argument used to establish Theorem 1 when applied to this special case yields the following.

THEOREM 2. The function

$$g_{\alpha}(z) = \int_{0}^{z} \frac{d\zeta}{(1+\zeta)^{2\alpha}}$$

is univalent in E if and only if $|\alpha| \leq 1/2$ or $|\alpha-1| \leq 1/2$.

This theorem proves that the set of points A^* in the α -plane such that g_{α} in (1) is a member of S whenever $f \in S^*$ is contained in the closed set $|\alpha| \leq 1/2$, $|\alpha - 1| \leq 1/2$. Merkes and Wright [5] have shown that A* contains the real interval $-1/2 \le \alpha \le 3/2$ contained in this set. One consequence of the theorem in the next section of this paper is that there are nonreal points in A.

3. The set I_{p}

Causey [3] and Kim [4] showed that A contains the disk $|\alpha| \leq (\sqrt{2}-1)/4 \approx$.1035 and .1103, respectively. These results were improved in the next theorem.

THEOREM 3. If $f \in S$, then g_{α} in (1) is in S for $|\alpha| \leq 1/4$.

PROOF. We have for |z| = r < 1 that

$$\frac{zg_{\alpha}''}{g_{\alpha}'} = |\alpha| \left| \frac{zf'}{f} - 1 \right| \le |\alpha| \left\{ \left| \frac{zf}{f} \right| + 1 \right\} \le |\alpha| \left(\frac{1+r}{1-r} + 1 \right) \le \frac{2|\alpha|(1+r)}{1-r^2} \le \frac{4|\alpha|}{1-r^2} \le \frac{4|\alpha|}{1-r$$

Now Becker in his thesis [1] has proved that an analytic function g in E that satisfies $|zg''/g'| \le 1/(1-|z|^2)$ in E is univalent in the unit disk. This condition is satisfied by g_{α} provided $4|\alpha| \leq 1$ and, hence, g_{α} is univalent in $|\alpha| \leq 1/4$. By Theorem 1 together with the above theorem, we conclude that $\{\alpha: |\alpha| \leq 1/4\} \subset A \subset A_p \subset \{\alpha: |\alpha| \leq 1/2\}.$

Furthermore, $A_{\phi} \subset A^*$ and by Theorem 2,

 $A^* \subset \{\alpha : |\alpha| \le 1/2 \text{ or } |\alpha - 1| \le 1/2\}.$

We showed that $g_{\alpha} \in S$ whenever $f \in S$ provided $|\alpha| \leq 1/4$. However, this bound 1/4 is not the best possible constant probably.

11

252

Y.J. Kim and E.P. Merkes

Air Force Academy Seoul, Korea

University of Cincinnati Cincinnati, Ohio U.S.A.

.

REFERENCES

- [1] J. Becker, Über Subordinationsketten und Quasikonform fortsetzbare schlichte Functionen, Thesis, Tech. Univ. Berlin (1970).
- [2] W.M.Causey, The Close-to-convexity and univalence of an integral, Math. Z. 99 (1967), 207-212.
- [3] _____, The univalence of an integral, Proc. Amer. Math. Soc. 27(1971), 500-503.
- [4] Y.J.Kim, Univalence of certain integrals, Thesis, University of Cincinnati, (1972).
- [5] E. P. Merkes and D. J. Wright, On the univalence of a certain integral, Proc. Amer. Math. Soc. 27(1971), 97-100.
- [6] M. Nunokowa, On the univalence of a certain integral, Trans. Amer. Math. Soc. 146(1969), 439-446.
- [7] W.C. Royster, On the univalence of a certain integral, Michigan Math. J. 12(1965), 385-387.
- [8] L. Špaček, Contribution à la théorie des functions univalents, Časopis Pěst. Mat. 62 (1932), 12-19.