Kyungpook Math. J.

Volume 12, Number 2
December, 1972

ON AN INTEGRAL OF POWERS OF A SPIRALLIKE FUNCTION

By Y. J. Kim and E. P. Merkes

1. Introduction

Let S denote the class of analytic, univalent (one-to-one) functions f in $E=\{z:|z|<1\}$ that are normalized by $f(0)=0$ and $f^{\prime}(0)=1$. The set of spirallike functions S_{p} is the subclass of S consisting of functions f for which there exists a real $\beta,|\beta|<\pi / 2$, such that $\operatorname{Re}\left\{e^{i \beta} z f^{\prime}(z) / f(z)\right\}>0, z \in E$. The starlike functions S^{*} is the subset of spirallike functions for which the constant β can be taken to be zero.

For $f \in S$ and for a complex number α, define
(1)

$$
g_{\alpha}(z)=\int_{0}^{z}[f(\zeta) / \zeta]^{\alpha} d \zeta
$$

A number of papers have appeared ([2], [3], [6]) that determine choices of α such that $g_{\alpha} \in S$ whenever $f \in S$. It is not difficult to prove, by normal family arguments, that the set A of complex numbers α for which $g_{\alpha} \in S$ whenever $f \in S$ is closed. The determination of the boundary of A, however, or even other properties of the set A such as its connectedness, appear to be quite difficult. In this paper, we consider the set A_{p} of complex numbers α for which $g_{\alpha} \in S$ whenever $f \in S_{p}$ and determine two closed sets I_{p} and O_{p} such that $I_{p} \subset A_{p} \subset O_{p}$. These sets are improvements of results of Causey [2]. Clearly $A \subset A_{p}$.

2. The set O_{p}

Royster [7] established the following lemma for an analogous problem to the one treated here.

LEMMA 1. The function $g(z)=\exp [\mu \log (1+z)]$ is univalent in E if and only if $\mu \neq 0$ lies in one of the closed disks $|\mu+1| \leq 1,|\mu-1| \leq 1$.

The function $g(z)$ in this lemma, after normalization and definition of the parameter μ, plays the role of the function g_{α} in (1) provided the integrand is suitably defined. In order to determine when this integrand is in S_{p}, we establish
the following result.
LEMMA 2. The function $f(z)=z \exp [\mu \log (1+z)]$ is univalent (and spirallike) in E if and only if $|\mu+1| \leq 1$.

FROOF. Set

$$
F(z)=\frac{z f^{\prime}(z)}{f(z)}=\frac{1+(1+\mu) z}{1+z} .
$$

Case 1. $|\mu+1|>1$. In this case $f^{\prime}(z)$ has a zero at $z=-1 /(\mu+1)$ which is in E. Hence $f(z)$ is not univalent in E.
Case 2. $|\mu+1|<1$. The linear fractional transformation $w=F(z)$ maps the unit circle $U=\{z:|z|=1\}$ onto a straight line that has one and only one point in common with the real axis and this point is in the interval $0<z<1$. Indeed, $F(-1)=\infty$ so $F(U)$ is a straight line. The interior point 0 of E and the exterior point $-1 /(\mu+1)$ of E are mapped by F respectively to 1 and 0 . Therefore the line segment joining 0 and 1 in the w-plane must cross the line $F(U)$. It follows that there is a real $\beta,|\beta|<\pi / 2$, such that

$$
\operatorname{Re}\left\{e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}\right\}=\operatorname{Re}\left\{e^{i \beta} F(z)\right\}>0, \quad z \in E .
$$

Since this implies f is univalent [8], we conclude $f \in S_{p}$.
Case 3. $|\mu+1|=1, \mu \neq 0$. The image of the unit circle U by $w=F(z)$ is a straight line through the origin which, since $F(0)=1$, is not the real axis. We conclude, as in the previous case, that $f \in S_{p}$.

THEOREM 1. For each complex number α in $|\alpha|>1 / 2$ there is a spirallike function f such that $g_{\alpha} \notin S$ where g_{α} is defined by (1).

PROOF. Let $f(z)=z \exp [\mu \log (1+z)]$ where $|\mu+1| \leq 1$. By Lemma 2, $f \in S_{p}$ and, for complex α,

$$
\begin{equation*}
g_{\alpha}(z)=\int_{0}^{z} \exp [\alpha \mu \log (1+\zeta)] d \zeta=\frac{1}{\alpha \mu+1}\{\exp [(\alpha \mu+1) \log (1+z)-1\} \tag{2}
\end{equation*}
$$

provided $\alpha \mu \neq-1$. The constants in (2) are immaterial as far as the univalence of g_{α} is concerned. Hence, by Lemma 1, g_{α} is univalent if and only if $\omega \neq-1$ and $|\omega| \leq 1$ or $|\omega+2| \leq 1$, where $\omega=\alpha \mu$. Now the disk $|\omega+\alpha| \leq|\alpha|$, which for $\alpha \neq 0$ is the same set as in the hypothesis $|\mu+1| \leq 1$, is contained in $|\omega| \leq 1$ if and only if $|\alpha| \leq 1 / 2$. For $|\alpha|>1 / 2$, however, there is always a point in $|\omega+\alpha| \leq|\alpha|$ that is in the exterior of $|\omega+2| \leq 1$ and $|\omega| \leq 1$. This implies there is a choice of $\ddot{\mu}$ such that the function g_{α} in (1) is not univalent in E. If $\omega=-1$, then
$g_{\alpha}=\log (1+z)$ which is in S.
Causey [2] proved the special case of Theorem 1 for which α is real and $\alpha>1 / 2$.

When $\mu=-2$ in Lemma 1, $f(z)=z /(1+z)^{2}$ in S^{*}. The argument used to establish Theorem 1 when applied to this special case yields the following.

THEOREM 2. The function

$$
g_{\alpha}(z)=\int_{0}^{2} \frac{d \zeta}{(1+\zeta)^{2 \alpha}}
$$

is univalent in E if and only if $|\alpha| \leq 1 / 2$ or $|\alpha-1| \leq 1 / 2$.
This theorem proves that the set of points A^{*} in the α-plane such that g_{α} in (1) is a member of S whenever $f \in S^{*}$ is contained in the closed set $|\alpha| \leq 1 / 2$, $|\alpha-1| \leq 1 / 2$. Merkes and Wright [5] have shown that A^{*} contains the real interval $-1 / 2 \leq \alpha \leq 3 / 2$ contained in this set. One consequence of the theorem in the next section of this paper is that there are nonreal points in A.

3. The set I_{p}

Causey [3] and Kim [4] showed that A contains the disk $|\alpha| \leq(\sqrt{2}-1) / 4 \approx$.1035 and .1103 , respectively. These results were improved in the next theorem.

THEOREM 3. If $f \in S$, then g_{α} in (1) is in S for $|\alpha| \leq 1 / 4$.
PROOF. We have for $|z|=r<1$ that

$$
\left|\frac{z g_{\alpha}^{\prime \prime}}{g_{\alpha}^{\prime}}\right|=|\alpha|\left|\frac{z f^{\prime}}{f}-1\right| \leq|\alpha|\left\{\left|\frac{z f}{f}\right|+1\right\} \leq|\alpha|\left(\frac{1+r}{1-r}+1\right) \leq \frac{2|\alpha|(1+r)}{1-r^{2}} \leq \frac{4|\alpha|}{1-r^{2}}
$$

Now Becker in his thesis [1] has proved that an analytic function g in E that satisfies $\left|z g^{\prime \prime} / g^{\prime}\right| \leq 1 /\left(1-|z|^{2}\right)$ in E is univalent in the unit disk. This condition is satisfied by g_{α} provided $4|\alpha| \leq 1$ and, hence, g_{α} is univalent in $|\alpha| \leq 1 / 4$.
By Theorem 1 together with the above theorem, we conclude that

$$
\{\alpha:|\alpha| \leq 1 / 4\} \subset A \subset A_{p} \subset\{\alpha:|\alpha| \leq 1 / 2\}
$$

Furthermore, $A_{p} \subset A^{*}$ and by Theorem 2,

$$
A^{*} \subset\{\alpha:|\alpha| \leq 1 / 2 \text { or }|\alpha-1| \leq 1 / 2\} .
$$

We showed that $g_{\alpha} \in S$ whenever $f \in S$ provided $|\alpha| \leq 1 / 4$. However, this bound $1 / 4$ is not the best possible constant probably.

Air Force Academy
Seoul, Korea

University of Cincinnati
Cincinnati, Ohio
U.S. A.

REFERENCES

[1] J. Becker, Uber Subordinationsketten und Quasikonform fortsetzbare schlichte Functionen, Thesis, Tech. Univ. Berlin (1970).
[2] W.M. Causey, The Close-to-convexity and univalence of an integral, Math. Z. 99 (1967), 207-212.
[3] \qquad , The univalence of an integral, Proc. Amer. Math. Soc. 27(1971), 500-503.
[4] Y. J. Kim, Univalence of certain integrals, Thesis, University of Cincinnati, (1972).
[5] E. P. Merkes and D. J. Wright, On the univalence of a certain integral, Proc. Amer. Math. Soc. 27(1971), 97-100.
[6] M. Nunokowa, On the univalence of a certain integral, Trans. Amer. Math. Soc. 146(1969), 439—446.
\because
[7] W.C. Royster, On the univalence of a certain integral, Michigan Math. J. 12(1965), 385-387.
[8] L. Špaček, Contribution d̀ la théorie des functions univalents, Časopis Pěst. Mat. 62 (1932), 12-19.

