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ON AN INTEGRAL OF POWERS OF A SPIRALLIKE FUNCTION
By Y.J.Kim and E. P. Merkes

1. Introduection

Let S denote the class of analytic, wunivalent (one-to-one) functions f 1n
E={z: |z] <1} that are normalized by f(0)=0 and f(0)=1. The set of spirallike
functions Sp is the subclass of S consisting of functions f for which there exists

a real 8, 18| <wn/2, such that Re {eiﬁ 2 (2)/f(2)} >0, 2&E., The starlike functions
S* is the subset of spirallike functions for which the constant B can be taken to
be zero.

For f&S and for a complex number a, define

(1) g, ()= f [FCO /L% dL.
4,

A number of papers have appeared ([2], [3], [6]) that determine choices of «
such that g &S whenever f&ES. It is not difficult to prove, by normal family

arguments, that the set A of complex numbers o for which g, ES whenever fES

1s closed. The determination of the boundary of A, however, or even other
properties of the set A such as its connectedness, appear to be quite difficult. In
this paper, we consider the set A4, of complex numbers a for which g,&S

whenever fESp and determine two closed sets 7 5 and Op such that [ pCApCOp.
These sets are improvements of results of Causey [2]. Clearly ACA,.

2. The set Op

Royster [7] established the following lemma for an analogous problem to the
one treated here.

LEMMA 1. The function g(z)=explu log(1+2z)] is univalent in E if and only if
u#“0 lies tn one of the closed disks [p+11<1, |pu—1]L1.

The function g(z) in this lemma, after normalization and definition of the
parameter g, plays the role of the function g, in (1) provided the integrand is

suitably defined. In order to determine when this integrand is in S, we establish
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the following result.

LEMMA 2. The function f(z)=z exply log (1+2)) is univalent (and spirallike)
in E if and only if [p+1]<L

FROOF. Set

_ 2f(z). _ 1+(1+pz
FR=" iFz .

Case 1. |u+1|>1. In this case f(z) has a zero at z=-—1/(g¢+1) which is In
E. Hence f(z) is not univalent in £.

Case 2. |u-+1|<1. The linear fractional transformation w=F(z) maps the unit
circle U={z : |z] =1} onto a straight line that has one and only one point In
common with the real axis and this point is in the interval 0<z<1. Indeed,
F(—1)=o00 so F(U) is a straight line. The interior point 0 of £ and the exterior
point —1/(u+1) of E are mapped by F respectively to 1 and 0. Therefore the
line segment joining O and 1 in the w-plane must cross the line F(U). It follows
that there is a real 8, |8| <w/2, such that

Re {eiﬁ zj;é? }:Re {€PF(2)} >0, 2EE.

Since this implies f is univalent [8], we conclude f&5,.

Case 3. |u+1|=1, u#0. The image of the unit circle U by w=F(z) is a
straight line through the origin which, since F(0)=1, is not the real axis. We
conclude, as in the previous case, that fESp.

THEOREM 1. For each complex number ox in |ot|>1/2 there is a spirallike function
J such that g S where g, ts defined by (1).

PROOF. Let f(z)=z exply log (14+2)] where |pu+1|<i1. By Lemma 2, fES,
and, for complex e,

— z _ 1 _
(2) g, (D)= Of explop log(1+0)]df=—"— fexp [(an+Dlog(1+2)-1}

provided auz#=—1. The constants in (2) are immaterial as far as the univalence
of g, is concerned. Hence, by Lemma 1, g, is univalent if and only if w#—1
and |w|<1 or |w+2|<1, where w=ap. Now the disk |w+a|<|w|, which for
a7#0 18 the same set as in the hypothesis |¢+1|<1, is contained in |w|<<1 if and
only if |a|<1/2. For |a|>1/2, however, thereis always a point in |w+a|<|a]
that is in the exterior of |w+2|<1 and |w|<1. This implies there is a choice of
i such that the function g, in (1) is not univalent in E. If w=-—1, then
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g .=log(1+2z) which is in S.

Cé,usey [2] proved the special case of Theorem 1 for which a is real and
a>1/2 o I

When u=—2 in Lemma 1, f(z)=2z/(1 -l-z)2 in S*. The argument used to establish
Theorem 1 when applied to this special case yields the following.

THEOREM 2. The function

F dC
z)= -
ga() ‘Of (1_]_(:)2.::(
¢S univalent tn E if and only if | a|<1/2 or |a—1|<L1/2.

~This theorem proves that the set of points A¥ in the a-plane such that g, in
(1) 1s a member of S whenever f&S* is contained in the closed set |ar|[<1/2,
laa—1|<1/2. Merkes and Wright [5] have shown that A* contains the Ireal
interval —1/2<a<3/2 contained in this set. One consequence of the theorem in

the next section of this paper is that there are nonreal points in A.

3. The set I 5

Causey [3] and Kim [4] showed that A contains the disk |a|<(/ 2 —1)/4~
.1035 and .1103, respectively. These results were improved in the next theorem.

THEOREM 3. If f&S, then g, in (1) is in S for |a|<1/4

PROOF. We have for |z| =7<1 that

[

zg "’ ' ,
<= lal | 1| <l L i <lal [ ) < 2ol  dlal

2 2
8 J s 1—7 1—7 1—7

Now Becker in his thesis [1] has proved that an analytic function g in E that
satisfies |zg”/g”1<1/(1— lzlz) in EF is univalent in the unit disk. This condition
i1s satisfied by g, provided 4|a|<1 and, hence, g, is univalent in |a|<1/4.

By Theorem 1 together with the above theorem, we conclude that
o ) <1/4) CACAPC o | <1/2}.

Furthermore, APCA* and by Theorem 2,

A*C o : |a]<1/2 or |a—1]<1/2}.
We showed that g &S5 whenever f&S provided |a|<1/4. However, this bound
1/4 1s not the best possible constant probably.
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